Вероятности и неприятности. Математика повседневной жизни — страница 7 из 40

х чисел! Дело в том, что отдельное число, как точка на отрезке, имеет нулевую меру и честную нулевую вероятность. Отлична от нуля лишь мера сплошного отрезка, пусть даже очень маленького. Именно поэтому мы говорим не о вероятности получить некоторое значение случайной величины, а о плотности вероятности, которая при умножении на конечную меру подмножества в вероятностном пространстве даст конечную величину — вероятность попасть в это подмножество.

Любопытно, но, окажись у нас идеальный генератор случайных чисел с бесконечной точностью, вероятность получить с его помощью какое-либо рациональное число[8] (не какое-то конкретное, а вообще любое) тоже будет равна нулю. Драматизма этому факту придает то обстоятельство, что множество рациональных чисел не просто бесконечно, оно всюду плотно. Это значит, что в любой сколь угодно малой окрестности выбранной рациональной точки можно обнаруживать новые и новые рациональные точки. Если мы захотим изобразить это множество графически на числовой оси, то можем брать карандаш и смело рисовать сплошную прямую на ней. Однако и это множество имеет нулевую меру на множестве всех вещественных чисел! Доказательство того, что рациональные числа образуют плотное подмножество нулевой меры множества вещественных чисел, наделало шума в конце XIX века. В таких случаях математики говорят: случайно выбранное вещественное число почти наверняка будет иррациональным. Как бы странно ни звучало, но «почти наверняка» — точный математический термин, означающий, что событие — дополнение подмножества вероятностного пространства нулевой меры.

Если бы пифагорейцам удалось заглянуть в науку будущего, они пришли бы в недоумение, обнаружив, что верные и понятные рациональные числа — как им казалось, единственно возможные, на которых строилась вся их математика, — практически не встречаются на числовой оси! Вот уж точно — закон подлости! И если в быту мы чаще всего встречаем целые числа или несложные дроби, то даже в повседневной физике или геометрии «работает» большое количество иррациональных зависимостей (корни различных степеней) и трансцендентных функций (синусы, логарифмы и т. п.), делающее рациональные и целые решения редкостью. Среди фундаментальных физических констант нет «фундаментально» рациональных чисел. Некоторые из них — такие как скорость света, заряд электрона, постоянные Планка и Больцмана[9] — приняты рациональными или целыми по соглашению. Просто единицы измерения подобраны так, чтобы фиксировать количество значимых цифр в этих константах, поэтому в таблицах такие величины указаны «точно», но эта точность в известном смысле искусственная, принятая для удобства.

Если кто-то терпеливо проведет тысячу экспериментов с монеткой и радостно скажет вам, что у него получилось столько же выпадений «орлов», сколько и «решек», можете смело выразить сомнение или поздравить его с редкой удачей. Хоть бросание монетки — дискретный случайный процесс, по мере накопления статистики мощность вероятностного пространства будет расти, а мера события «число „орлов“ совпадает с числом „решек“» станет уменьшаться. Можно показать, что вероятность этого «самого вероятного» события уменьшается с ростом числа испытаний как . Для сотни бросаний это около 8 %, для десяти тысяч — в десять раз меньше.

Мы еще вернемся к этим рассуждениям в одной из следующих глав, когда зададимся вопросом о том, насколько каждый из нас может считать себя нормальным.

О коварстве географических карт

Я хочу вернуться к толкованию вероятности и продемонстрировать эквивалентность ее колмогоровского и частотного определений. Мы раскроем загадку одного закона подлости, который не вошел в классические книги по мерфологии, но хорошо известен туристам, геологам и всем, кто пользуется топографическими картами:

То место, куда направляется турист, чаще всего оказывается либо на сгибе карты, либо на краю листа.

Раскроем карту, чтобы найти на ней какой-нибудь объект. Предположим, нас одинаково часто интересуют объекты, расположенные на всех участках карты. Причем не объекты сами по себе как точки. Весь смысл использования карты состоит в обозрении окрестностей объекта, некой конечной площади. Пусть нам достаточно будет некоторой малой доли α от площади карты S, чтобы понять, как попасть туда, куда нужно. Если то, что мы ищем, окажется недалеко от сгиба или края карты, скажем ближе какого-то критического расстояния d, мы можем счесть, что закон туриста сработал. Доля таких пограничных площадей в общей площади карты даст нам вероятность испытать этот закон подлости на себе. Вот как выглядят неприятные участки карты при α = 0,5 % и всего одном сгибе (рис. 2.3).


Рис. 2.3. Серым выделены «нехорошие» участки. Отдельно показан участок с полупроцентной площадью для карты размерами 40×50 см, она имеет размер, слегка превышающий 3 см


Для окрестности в форме квадратика  Неприятные полоски будут иметь площадь  Четыре полосы: две вертикальные и две горизонтальные — расположатся у края; любой дополнительный изгиб, горизонтальный или вертикальный, добавит еще одну полоску. А теперь воспользуемся свойством аддитивности мер и вычислим меру объединения всех полосок как сумму их площадей, за вычетом площади пересечений. При этом следует заметить, что пересекающиеся полоски формируют квадратики площадью d2 = αS.

Сложив карту так, чтобы получилось n горизонтальных и m вертикальных изгибов, мы получим суммарную площадь неприятной зоны, равную  Разделив ее на площадь всей карты S, получим неприятную долю общей площади, выраженную только через количество сгибов и α. Отсюда получаем вероятность оказаться в этой доле при случайном выборе объекта:

На рисунке 2.4 заливкой показаны области, в которых эта доля превышает 50 % для различных значений α. Например, приняв α = 0,75 % и сложив карту вдвое в одном направлении (одна складка) и вчетверо — в другом (три складки), мы найдем, что вероятность попасть в неудобное место превысит 50 %.


Рис. 2.4. Зоны, в которых вероятность оказаться на сгибе карты или на ее краю, превышают 50 %. Числами отмечены значения α


Чаще всего карты имеют по три вертикальные и три горизонтальные складки, что дает вероятность выполнения закона подлости около 60 % при весьма незначительном α = 0,5 %.

Проверяем честность реальной монеты

Теперь мы можем вернуться к вопросу, с которого начался наш разговор: насколько может быть честна реальная монетка? Колмогоровское определение вероятности дополнило ее частотное определение и свело его к геометрическому (как к доле «объема» события в общем «объеме» возможностей). Таким образом, доля площади белых полосок на рис. 2.1 отражает вероятность того, что монетка в результате эксперимента не поменяет исходной ориентации, а доля серых — вероятность получить обратную ориентацию. Монетку мы можем считать честным генератором двух этих равновероятных исходов, только если сможем показать, что общая площадь белых полосок равна общей площади закрашенных.

Но вот беда! Если добросовестно рассматривать всю четверть координатной плоскости, то площадь каждой отдельной полоски на диаграмме окажется бесконечной. Более того, и полосок бесконечное число! Как же сравнивать бесконечные суммы бесконечных значений? Нам опять поможет понятие меры. Аддитивное свойство позволит нам аккуратно показать, что бесконечность не мешает площадям серых и белых областей быть одинаковыми. В явном виде уравнения для наших кривых имеют вид ω = n/t. Если площадь под кривой ω = 1/t равна S, то благодаря свойству аддитивности площадь под кривой ω = n/t будет равна Sn = nS. В свою очередь, для отдельных полосок получаем: Sn — Sn–1 = nS — (n–1)S = S, а это значит, что разница площадей не зависит от «номера» гиперболы. Это не особенность именно гипербол, тот же вывод можно сделать для любой кривой вида y = nf(x). А раз так, попадания в белую или серую часть диаграммы равновероятны для всей области определения, как и ожидается для «честной» монетки.

Рассуждения, которые мы сейчас привели, кажутся достаточно простыми, но дают весьма общий результат, применимый к любым аддитивным величинам. Абстрактное понятие меры позволило нам сравнивать бесконечные величины, оставаясь в рамках логики и здравого смысла.

Абстракции — это хорошо, но можно возразить, что в реальности мы подбрасываем монетки не со всеми возможными параметрами. Как показали эксперименты со скоростной камерой, при бросании монеты рукой угловые скорости попадают в диапазон от 20 до 40 оборотов в секунду, а длительность полета — от половины до одной секунды. Эта область на рис. 2.1 выделена прямоугольником. В ней суммарная площадь белых полосок чуть больше, чем серых, и можно сделать вывод, что вероятность выпадения той же стороны, что была вверху при броске, составит 50,6 %.

В 2007 году Перси Диаконис и соавторы опубликовали статью, в которой дается развернутый анализ процесса подбрасывания монетки. Детальное описание механики летящего и вращающегося диска, который не просто крутится, а еще и прецессирует (его ось вращения сама поворачивается в полете, описывая коническую поверхность), показывает, что при ручном подбрасывании из позиции «орел сверху» вероятность выпадения «орла» составляет 51 %. К смыслу этого результата мы еще вернемся.

Откуда же берется случайность?

В сувенирных лавках можно найти магнитные маятники для «выбора желаний». Это тоже механические генераторы случайности, и их иногда ошибочно называют «хаотическими маятниками». Начав движение с каких-то начальных позиции и скорости, маятник совершает ряд «непредсказуемых» колебаний и наконец останавливается в одном из секторов. Однако колебания и здесь не непредсказуемы, просто они очень чувствительны к начальным условиям. Для каждого сектора, в котором может остановиться маятник, существует