В связи с этим можно вспомнить один из законов мерфологии, который некий Дрейзен назвал законом восстановления:
В качестве примера приводится следующее наблюдение: на склеивание вазы уходит больше времени, чем на то, чтобы ее разбить. Этот закон удивительно точно описывает соотношение между характерными скоростями для процесса релаксации устойчивой системы, которую можно описать убывающим экспоненциальным законом e—λt и скоростью развития катастрофического процесса в неустойчивой системе, в линейном приближении — экспоненциального роста малого возмущения eλt. Эти скорости действительно обратно пропорциональны друг другу.
В примере с вазой процесс склеивания — не релаксация, не переход к наиболее вероятному состоянию. Он ближе к другому процессу — самоорганизации, — который в первом приближении описывается логистическим законом и ближе по скорости к релаксации, чем к катастрофе (рис. 2.8).
Рис. 2.8. Типичные нестационарные процессы: катастрофа, релаксация и самоорганизация, — имеющие одинаковое характерное время
Иногда, гуляя в снегопад, я удивляюсь тому, что снежинка падает мне на нос. Удивляюсь оттого, что вероятность этого события ничтожно мала. Если рассудить, снежинка родилась высоко в небе над Тихим океаном, кружилась в беспорядочных турбулентных потоках в облаке, падала, непрерывно меняя направление движения… чтобы попасть на кончик моего носа на Камчатке! А какой ошеломительный путь прошли фотоны от далекой звезды?! Десятки тысяч лет они неслись сквозь Вселенную, их не поглотила пыль, им не встретился астероид! Родились они в бушующем квантовом мире далекой звезды, а закончили свой путь в квантовом мире белка опсина на сетчатке в моем глазу. Даже считать вероятность этого события нет смысла, она исчезающе мала. Но событие случается, и я вижу мерцающий свет звезды. Теперь понятно: это все потому, что площадь моего носа и даже молекулы опсина имеют ненулевую меру. Но все равно удивительно: то, что почти наверняка не должно было произойти, все же происходит!
О роли предопределенности или случайности в нашей судьбе, об истинности или призрачности нашего знания о природе пусть спорят философы. Я же призываю читателя взглянуть на мир с высоты математических абстракций и восхититься его красотой и согласованностью.
Глава 3. Головокружительный полет бутерброда с маслом
Тема падающих бутербродов не дает покоя ни широкой публике, ни исследователям. Десятки лет проводятся эксперименты, снимается кино, пишутся статьи, падающий бутерброд обрастает легендами и неправильными выводами. Мало какая столь же бесполезная задача привлекала к себе такое внимание. И если вы думаете, что это баловство, то имейте в виду, что за ее решение даже премии дают — правда, тоже несерьезные. В 1996 году Роберт Мэтьюз получил Шнобелевскую премию за работу «Падающий бутерброд, закон Мёрфи и фундаментальные константы»[10], опубликованную в European Journal of Physics. Несмотря на шуточную тему и соответствующую реакцию научного сообщества, это небезынтересная статья, в которой проводится тщательный анализ процесса соскальзывания и делается далеко идущий вывод: на какой бы планете ни возникли антропоморфные существа, живущие в атмосфере, они будут обречены на закон бутерброда. После такого триумфа бесполезных исследований можно бы тему и закрыть, но зачем упускать возможность рассмотреть на примере занятной задачки интересные и объективно полезные методы!
Айда кидать бутерброды в Монте-Карло!
Мы редко подбрасываем бутерброды, как монетку, — по крайней мере, когда становимся старше двух лет. Чаще всего мы невольно повторяем примерно один и тот же эксперимент: бутерброд, изначально расположенный маслом вверх, выскальзывает из рук или съезжает со стола. В процессе соскальзывания он закручивается, летит в воздухе и наконец шлепается на стол или на пол. На начальный этап падения влияет ряд параметров: трение о пальцы или поверхность стола, начальное положение бутерброда и его начальная скорость, высота падения — наконец, размеры бутерброда. Налицо динамическая система с несколькими входными параметрами и одним выходным — положением бутерброда на полу. Внутри системы, как и в случае с монеткой, работают механические законы, которые описываются дифференциальными уравнениями, и они детерминистические. Это значит, что в них нет никаких случайностей. Результат зависит только от входных данных, и при точном повторении параметров мы должны получать идентичные результаты. Это относится к модели бутерброда, представленной в виде системы дифференциальных уравнений. А что насчет настоящих бутербродов, шероховатых и неповторимых, роняемых настоящими людьми в ресторанах, на улице или на диване? Изменчивость реального мира можно описать, подавая на вход детерминистической системы случайные параметры.
Однако даже алгебра случайных величин, включающая в себя лишь сложение и умножение, — дело непростое, а у нас дифференциальные уравнения! Мы не полезем в эти увлекательные дебри, а используем отработанную во многих областях технику — метод Монте-Карло. Он состоит в определении свойств некой сложной системы в результате многократных испытаний с различными случайными параметрами. Подчеркну еще раз: исследуемая система не стохастична и не хаотична, и на случайные входные данные она реагирует предсказуемо. В методе Монте-Карло случайность нужна лишь для того, чтобы эффективно перебрать как можно больше вариантов и заглянуть во все реалистичные «углы», получив представление о поведении системы. Это универсальный метод, применяемый в самых разнообразных задачах. Обычно студенты впервые знакомятся с методом Монте-Карло, изучая численное интегрирование, например вычисляя площадь какой-либо сложной фигуры, задаваемой системой неравенств, которая не имеет приличного аналитического представления. То обстоятельство, что вероятность — мера, позволяет использовать метод Монте-Карло для вычисления мер (площадей и объемов) геометрических фигур.
Особенность предстоящего эксперимента с бутербродом состоит в том, что нас интересует зависимость вероятности того или иного его исхода от параметров задачи. Мы будем искать ответ на вопрос: при каких обстоятельствах выполняется закон бутерброда? Станем подавать на вход нашей динамической системы различные конкретные параметры и набирать статистику по падениям маслом вверх и маслом вниз. И результатом ряда экспериментов будет число — вероятность падения маслом вниз.
Я убежден, что намеренно ронять на пол настоящие бутерброды из хлеба и масла неправильно, поэтому воспользуемся математическим моделированием. Для решения задачи я взял один из доступных симуляторов физического мира, которые используют для создания онлайн-игр. Он легко позволил создать виртуальные стол и пол, а также два бутерброда. Один оказывался на краю стола, а второй «выскальзывал из пальцев», то есть соскальзывал с точечной опоры (рис. 3.1).
Рис. 3.1. Математические эксперименты с бутербродами
В моих силах задать все параметры задачи: начальные позицию и угол бутерброда, горизонтальную скорость для случая смахивания со стола, коэффициенты трения, размеры бутерброда и высоту падения. В момент, когда бутерброд касается пола, фиксируется угол бутерброда, вернее угол вектора, нормального к нему. О том, с какой стороны оказалось масло, нам скажет знак синуса этого угла: положительному значению соответствует удачный случай, а отрицательному — положение маслом вниз. Результат заносится в таблицу, и новый виртуальный бутерброд готов к падению. Задачу мы поставим такую: оценить вероятность приземления бутерброда маслом вниз при его падении с заданной высоты.
При этом мы ничего пока не будем говорить о масле. Но обещаю, что ему будет посвящен отдельный разговор, где мы подробно рассмотрим его роль в этом законе.
Как правильно говорить о случайных величинах
Метод Монте-Карло подразумевает, что в качестве параметров используются случайные переменные. И здесь наконец пора разобраться с тем, что же такое случайная величина.
Вернемся к математическим структурам. Какой структурой можно моделировать результаты выпадения числа на игральной кости или уровень воды в реке, ведь там постоянное волнение? Как работать с числом автомобилей, проезжающих перекресток в течение часа? Какой структурой можно описать состояние электрона в атоме водорода? С одной стороны, это конкретные числа из вполне определенного множества значений: для кости, например, из множества {1, 2, 3, 4, 5, 6}, — и какое-нибудь значение легко получить, проведя эксперимент. Однако повторный опыт даст иной результат — это явно не просто число: сегодня оно одно, завтра другое. Может даже возникнуть философский вопрос: а имеет ли смысл говорить о каком-то точном значении «уровня воды в реке» или числе автомобилей, ведь эти величины невозможно «поймать» и зафиксировать? Возможно ли в каком-либо смысле точное знание о случайной переменной?
Часто, говоря о таких случайных величинах, ограничиваются одним средним значением, и мы говорим о «средней скорости в час пик» или об «орбите электрона». Но это отличный способ запутаться или даже намеренно запутать. Если фраза «средняя скорость в час пик равна 15 км/ч» дает неплохое представление о ситуации на улице в целом, то переучивать студентов-физиков от мышления орбитами к оперированию волновыми функциями уже весьма непросто. Ну и, наконец, какой смысл в среднем значении числа, выпадающего на игральной кости? Посчитать-то его можно, любой с этим справится: (1 + 2 + 3 + 4 + 5 + 6) / 2 = 3,5. Но это число не говорит ровным счетом ничего о рассматриваемой случайной величине. Его даже нет на гранях кубика.