Вид с высоты — страница 17 из 43

И так как стандарт, который ныне принят, является пока самым точным, то выиграли от этого все.

Вот так и надо решать все дела в мире.

7. Четные берут верх

Недавно меня попросили написать статью о применении радиоактивных изотопов в промышленности. Когда я писал, мне стало как-то грустно оттого, что приходилось иметь дело только с практическим использованием изотопов.

В изотопах есть много такого, что не находит применения на практике, но о чем стоило бы поговорить.



* * *

Путь, по которому термин «изотоп» вошел в научный лексикон, был довольно извилистым. За два тысячелетия большинство элементов было выделено и идентифицировано. В 1869 году русский химик Д. И. Менделеев расположил известные элементы в порядке возрастания атомного веса и показал, что можно составить таблицу, в которой элементы (в указанном порядке) располагаются так, что вещества, имеющие близкие свойства, попадают в одну колонку.

К 1900 году периодическая таблица стала святыней химиков. Каждый элемент имел свое место в таблице, и почти все клетки в ней были заполнены. Правда, были еще и пустые места, но это уже никого не беспокоило, так как все знали, что список известных элементов неполон. Со временем химики уверились в том, что каждое свободное место в таблице займет вновь открытый элемент. И они не ошиблись. Последний «пробел» был заполнен в 1948 году, а список элементов, известных Менделееву, был продолжен. В настоящее время известно 103 различных элемента[5].

Однако после 1900 года возникло серьезное противоречие. Среди радиоактивных продуктов распада урана и тория были найдены вещества, которые по правилам XIX века следовало бы отнести к новым элементам, так как их свойства не были похожи на свойства ни одного из других элементов… но места для них в периодической таблице не оказалось.

Тогда несколько ученых решили помещать сразу по два, а то и по три элемента в одну клетку таблицы. В 1913 году английский физик Фредерик Содди предложил назвать такие элементы изотопами, что в переводе с греческого означает «то же место».

Последующие открытия реабилитировали периодическую таблицу. Английский физик Эрнест Резефорд уже в 1906 году показал, что атом состоит из крохотной центральной части, содержащей положительно заряженные протоны, и сравнительно большой внешней области, где обращаются отрицательно заряженные электроны. Число протонов в центре равно числу электронов на периферии, и так как величина положительного электрического заряда протона (произвольно принятая за +1) в точности равна величине электрического заряда электрона (которая, естественно, равна –1), то атом в целом электрически нейтрален.

Следующий шаг сделал молодой английский физик Генри Гвин-Джефрис Мозли. Изучая длину волн рентгеновского излучения различных элементов, он сделал вывод, что общий положительный заряд ядра каждого элемента имеет характерную величину. Она была названа атомным номером.

Например, атом хрома имеет ядро с положительным зарядом 24, атом марганца — ядро с положительным зарядом 25, атом железа — 26. Теперь можно сказать, что эти элементы имеют атомные номера 24, 25, 26. Далее, раз положительный заряд точно соответствует числу протонов в ядре, то каждый из этих трех элементов имеет соответственно по 24, 25 и 26 протонов в ядре, вокруг которого вращаются 24, 25 и 26 электронов.

В XIX столетии считали, что все атомы элемента тождественны. Это было лишь предположение, но оно лучше всего объясняло тот факт, что все образцы элемента имеют одинаковые химические свойства и одинаковый атомный вес.

Та же точка зрения господствовала и во времена, когда атомы считались твердыми, неделимыми, похожими один на другой шариками.

Но в XX веке такое объяснение уже никак не вязалось с новыми представлениями, согласно которым атомы — это сложные сочетания мельчайших частиц.

Обработка результатов рентгеновского анализа показала, что атомный номер элемента сообразуется с общей для каждого элемента закономерностью, то есть все его атомы имеют одинаковое число протонов в ядре, а следовательно, и одинаковое число электронов в наружных слоях. В период с 20-го по 30-й годы было доказано, что химические свойства элемента зависят от числа электронов в атоме и, следовательно, все атомы данного элемента обладают одинаковыми химическими свойствами. На первых порах такое объяснение удовлетворяло всех.

Что касается атомного веса, дело обстояло не так просто. С самого начала возникновения теории атомного ядра было известно, что, кроме протонов, в ядре должны быть какие-то другие частицы. Например, ядро атома водорода легче ядер атомов всех прочих элементов, и оно несет положительный заряд, равный 1. Поэтому было естественно предположить, что ядро атома водорода состоит из одного-единственного протона. Атомный вес водорода принято было считать равным единице еще задолго до того, как решился вопрос о строении атома, и это оказалось вполне обоснованным.

С другой стороны, атомный вес гелия считался равным 4, так как было известно, что его ядро в 4 раза массивнее ядра атома водорода. Невольно напрашивался вывод, что в ядре гелия должно быть четыре протона. Однако его атомный номер, определяемый положительным зарядом ядра, был равен всего двум, а это в свою очередь наталкивало на мысль, что в ядре должно быть всего два протона.

С этими двумя различными, но вполне закономерными выводами что-то надо было делать. Единственной другой субатомной частицей, известной в первые десятилетия нашего века, был электрон. Если предположить, что в ядре атома гелия имеется четыре протона и два электрона, то его атомный вес оказывается равным четырем, потому что вес электронов ничтожен по сравнению с весом ядра. Атомный номер тогда был бы равен двум, так как положительный заряд двух протонов оказался бы компенсированным отрицательным зарядом двух электронов.

Однако даже при таком представлении о ядре концы с концами все равно не сходились. Например, получалось так, будто в ядре атома гелия шесть отдельных частиц — четыре протона и два электрона, а это противоречило другим уже известным из опытов фактам. Физики почесывали затылки и уныло перешептывались.

И вот в 1932 году английский физик Джеймс Чедвик открыл нейтрон, и в конце концов оказалось, что с теорией все в порядке. Нейтрон равен (вернее, почти равен) по своей массе протону, но заряда не имеет. Теперь можно было считать, что в ядре атома гелия два протона и два нейтрона. Положительный заряд и, следовательно, атомный номер равен двум, а атомный вес — четырем. Все четыре частицы ядра атома гелия оказались на своем месте, и теперь концы с концами сходились.

А как же влияет на химические свойства элементов присутствие нейтронов в ядре атома? Никак или по крайней мере незаметно.

Возьмем для примера атом меди. Он имеет атомный номер 29, и поэтому у каждого атома меди есть 29 протонов в ядре и 29 электронов, вращающихся вокруг ядра. Но атомный вес меди равен (приблизительно) 63, и поэтому ядро меди должно содержать, кроме 29 протонов, еще и 34 нейтрона. У нейтронов нет электрического заряда, который надо было бы нейтрализовать. 29 электронов уравновешивают 29 протонов; что касается нейтронов, то в этом плане их можно сбросить со счетов.

Теперь предположим интереса ради, что атом меди обладает ядром, в котором 29 протонов и 36 нейтронов, то есть на два нейтрона больше, чем предполагалось ранее. Такому ядру по-прежнему требовалось бы всего 29 электронов, чтобы сбалансировать электрический заряд, а его химические свойства, которые, как известно, зависят только от количества электронов, оставались бы такими же.

Другими словами, если судить только по химическим свойствам, то не все атомы элемента непременно должны быть тождественны. Число нейтронов в ядре может изменяться, и с химической точки зрения это не имеет никакого значения. Так как периодическая таблица опирается на химическую общность элементов, которые определяют по присущим им химическим свойствам, то каждое место в периодической таблице может занимать целая группа разнообразных атомов с различным числом нейтронов, но при условии, что число протонов во всех этих атомах будет одинаковым.

Как же это может повлиять на атомный вес?

Обе упомянутые разновидности атомов меди, естественно, должны были полностью перемешаться за все время существования Земли. Имея одинаковые химические свойства, они должны были бы пройти один и тот же путь в геохимических процессах; в равной мере взаимодействовать со средой, в одно и то же время и в одинаковой степени растворяться и выпадать из растворов. Оба вида атомов были неотделимы — и в результате любой образец элемента, взятый в природе или полученный лабораторным путем, должен содержать одинаковую смесь этих двух изотопов меди.

Таким образом, определяя атомный вес, химики XIX столетия получали средний атомный вес этого элемента. Средний вес был всегда одинаков, но это не означало, что каждый атом в точности похож на другой.

Что же нарушилось в столь удобной для химиков схеме, когда была открыта радиоактивность?

А вот что. Радиоактивный распад — процесс ядерный, и сама возможность его возникновения, скорость и характер протекания — все это зависит от расположения частиц в ядре и не имеет ничего общего с электронами, находящимися вне ядра. Следовательно, два атома, в ядрах которых одинаковое число протонов, но разное число нейтронов, должны обладать одинаковыми химическими, но разными ядерными свойствами. Именно благодаря общности химических свойств они стоят в одной и той же клетке периодической таблицы. (Разные ядерные свойства тут не играют роли.)

Но в первом десятилетии нашего века, когда еще не знали о разнице между химическими и ядерными свойствами, началась общая паника: многим казалось, что периодическая система элементов терпит крах.

Было бы легко различить два изотопа (которые, как мы теперь знаем, являются двумя атомами с одинаковым числом протонов, но разным числом нейтронов в ядрах), если бы все решала радиоактивность. А что, если ни один изотоп не радиоактивен? Может ли существовать не один, а несколько нерадиоактивных изотопов каждого данного элемента?