Виртуальный ты. Как создание цифровых близнецов изменит будущее человечества — страница notes из 61

Примечания

1

Термин, обозначающий компьютерное моделирование (симуляцию) эксперимента, чаще биологического. Фраза была создана по аналогии с фразами in vivo (в живом организме) и in vitro (в пробирке).

2

YouTube. The virtual human project (posted March 12, 2018). https://www.youtube.com/watch?v=1ZrAaDsfBYY.

3

Grieves, M. & Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems (eds. Kahlen, J., Flumerfelt, S. & Alves, A.), 85–113 (Springer, 2017).

4

Shafto, M. et al. DRAFT Modeling, Simulation, Information Technology & Processing Roadmap, Technology Area 11 (NASA, 2010).

5

Negri, E., Fumagalli, L. & Macchi, M. A review of the roles of digital twin in CPS-based production systems. Procedia Manuf. 11, 939–948 (2017).

6

Niederer, S. A., Sacks, M. S., Girolami, M. & Willcox, K. Scaling digital twins from the artisanal to the industrial. Nat. Comput. Sci. 1, 313–320 (2021).

7

El Saddik, A. Digital twins: The convergence of multimedia technologies. IEEE Multimed.(2018). https://doi.org/10.1109/MMUL.2018.023121167.

8

Лерой Худ, интервью с Питером Ковени и Роджером Хайфилдом, 12 августа 2021 г.

9

Тим Палмер, электронное письмо Питеру Ковени, 2 июня 2021 г.

10

Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015).

11

Abbe, C. The needs of meteorology. Science 1(7), 181–182 (1895).

12

Alley, R. B., Emanuel, K. A. & Zhang, F. Advances in weather prediction. Science 363, 342–344 (2019).

13

European Commission. Shaping Europe’s digital future: Destination Earth. https:// digital-strategy.ec.europa.eu/en/policies/destination-earth (accessed May 29, 2022).

14

Mitchell, H. H., Hamilton, T. S., Steggerda, F. R. & Bean, H. W. The chemical composition of the adult human body and its bearing on the biochemistry of growth. J. Biol. Chem. 158, 625–637 (1945).

15

Proctor, J., Hsiang, S., Burney, J., Burke, M. & Schlenker, W. Estimating global agricultural effects of geoengineering using volcanic eruptions. Nature (2018). https://doi.org/10.1038/s41586-018-0417-3.

16

Dallas, V. & Vassilicos, J. C. Rapid growth of cloud droplets by turbulence. Phys. Rev. E— Stat. Nonlinear, Soft Matter Phys. (2011). https://doi.org/10.1103/PhysRevE.84.046315.

17

Morton, O. The Planet Remade: How Geoengineering Could Change the World (Granta, 2015).

18

Auffray, C. & Noble, D. Origins of systems biology in William Harvey’s masterpiece on the movement of the heart and the blood in animals. Int. J. Mol. Sci. (2009). https://doi.org/10.3390/ijms10041658.

19

Noble, D. Claude Bernard, the first systems biologist, and the future of physiology. Exp. Physiol. (2008). https://doi.org/10.1113/expphysiol.2007.038695.

20

Nosil, P. et al. Natural selection and the predictability of evolution in Timema stick insects. Science (2018). https://doi.org/10.1126/science.aap9125.

21

Пол Нерс, интервью с Питером Ковени и Роджером Хайфилдом, 25 сентября 2021 г.

22

Nurse, P. Biology must generate ideas as well as data. Nature 597, 305 (2021).

23

Charlton, W. Greek philosophy and the concept of an academic discipline. Hist. Polit. Thought 6, 47–61 (1985).

24

Coveney, P. & Highfield, R. The Arrow of Time: A Voyage through Science to Solve Time’s Greatest Mystery (W. H. Allen, 1991).

25

Coveney, P. & Highfield, R. Frontiers of Complexity: The Search for Order in a Chaotic World (Faber, 1996).

26

Hunter, P., Robbins, P. & Noble, D. The IUPS human physiome project. Pflugers Archiv Eur. J. Physiol. (2002). https://doi.org/10.1007/s00424-002-0890-1.

27

Hernandez-Boussard, T. et al. Digital twins for predictive oncology will be a paradigm shift for precision cancer care. Nat. Med. 27, 2065–2066 (2021).

28

Hunter, P. et al. A vision and strategy for the virtual physiological human in 2010 and beyond. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2010). https://doi.org/10.1098/rsta.2010.0048.

29

Human Brain Project. The Human Brain Project: A Report to the European Commission. HBP-PS Consortium (2012).

30

Kitano, H. Grand challenges in systems physiology. Front. Physiol. 1, 3 (2010).

31

Хорхе Луис Борхес. Создатель (рассказы, стихотворения, интервью) / Пер. Б. В. Дубина. М.: Азбука-Аттикус, 2022.

32

Borges, J. L. On exactitude in science. Los Anales de Buenos Aires 1, 3 (March 1946).

33

Matzeu, G. et al. Large-scale patterning of reactive surfaces for wearable and environmentally deployable sensors. Adv. Mater. 32, 2001258 (2020).

34

Coveney, P. V, Groen, D. & Hoekstra, A. G. Reliability and reproducibility in computational science: Implementing validation, verification and uncertainty quantification in silico. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 379, 20200409 (2021).

35

Bianconi, E. et al. An estimation of the number of cells in the human body. Ann. Hum. Biol. (2013). https://doi.org/10.3109/03014460.2013.807878.

36

Chellan, P. & Sadler, P. J. The elements of life and medicines. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2015). https://doi.org/10.1098/rsta.2014.0182.

37

Питер Слоот, электронное письмо Питеру Ковени и Роджеру Хайфилду, 4 августа 2021 г.

38

Пол Нерс, интервью с Питером Ковени и Роджером Хайфилдом, 24 сентября 2021 г.

39

Succi, S. Sailing the Ocean of Complexity: Lessons from the Physics-Biology Frontier (Oxford University Press, 2022).

40

Nowak, M. A. & Highfield, R. Supercooperators: Altruism, Evolution, and Why We Need Each Other to Succeed (Canongate, 2011).

41

Toker, D., Sommer, F. T. & D’Esposito, M. A simple method for detecting chaos in nature. Commun. Biol. (2020). https://doi.org10.1038/s42003-019-0715-9.

42

Brenner, S. Life sentences: Detective Rummage investigates. Genome Biol. (2002). https://doi.org/10.1186/gb-2002-3-9-comment1013.

43

Yip, K. M., Fischer, N., Paknia, E., Chari, A. & Stark, H. Breaking the next cryo-EM resolution barrier—atomic resolution determination of proteins! bioRxiv (2020). https://doi.org/10.1101/2020.05.21.106740.

44

Venter, J. C. Life at the Speed of Light: From the Double Helix to the Dawn of Digital Life (Viking, 2013).

45

Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

46

Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26(10),1146–1153 (2008).

47

Nurk, S. et al. The complete sequence of a human genome. bioRxiv (2021). https://doi.org/10.1101/2021.05.26.445798.

48

Nurse, P. What Is Life?: Five Great Ideas in Biology. (Scribe, 2020).

49

Venter, C., interview with Peter Coveney and Roger Highfield, December 29, 2021.

50

Levy, S. et al. The diploid genome sequence of an individual human. PLoS Biol. 5, 2113–2144 (2007).

51

Venter, J. C. A Life Decoded: My Genome, My Life (Viking, 2007).

52

Highfield, R. What’s wrong with Craig Venter? Mosaic (2016). https://mosaicscience.com/story/craig-venter-genomics-personalised-medicine/.

53

Perkins, B. A. et al. Precision medicine screening using whole-genome sequencing and advanced imaging to identify disease risk in adults. Proc. Natl. Acad. Sci. U. S. A. 115, 3686–3691 (2018).

54

Крейг Вентер, интервью с Питером Ковени и Роджером Хайфилдом, 29 декабря 2021 г.

55

Gates, A. J., Gysi, D. M., Kellis, M. & Barabási, A.-L. A wealth of discovery built on the Human Genome Project—by the numbers. Nature 590, 212–215 (2021).

56

Munro, S., Freeman, M., Rocha, J., Jayaram, S. A., Stevens, T., et al. Functional unknomics: closing the knowledge gap to accelerate biomedical research. Preprint. https://www.biorxiv.org/content/10.1101/2022.06.28.497983v1.

57

Abascal, F. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature (2020). https://doi.org/10.1038/s41586-020-2493-4.

58

Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757.e24 (2018).

59

Sey, N.Y.A. et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat. Neurosci. (2020). https://doi.org/10.1038/s41593-020-0603-0.

60

Herder, C. & Roden, M. Genetics of type 2 diabetes: Pathophysiologic and clinical relevance. Eur. J. Clin. Invest. 41, 679–692 (2011).

61

Ponomarenko, E. A. et al. The size of the human proteome: The width and depth. Int. J. Analyt. Chem. (2016). https://doi.org/10.1155/2016/7436849.

62

Venter, J. C. Life at the Speed of Light: From the Double Helix to the Dawn of Digital Life (Viking, 2013).

63

Highfield, R. Ultimate molecular machine plays key role in superbug fight. Science Museum Blog (2016). https://blog.sciencemuseum.org.uk/ultimate-molecular-machine-plays-key-role-in-superbug-fight/.

64

Farías-Rico, J. A., Selin, F. R., Myronidi, I., Frühauf, M. & Von Heijne, G. Effects of protein size, thermodynamic stability, and net charge on cotranslational folding on the ribosome. Proc. Natl. Acad. Sci. U. S. A. (2018). https://doi.org/10.1073/pnas.18127 56115.

65

Nilsson, O. B. et al. Cotranslational protein folding inside the ribosome exit tunnel. Cell Rep. (2015). https://doi.org/10.1016/j.celrep.2015.07.065.

66

Highfield, R. The anatomy of a hangover. Daily Telegraph (January 3, 2003). https:// www.telegraph.co.uk/technology/3304259/The-anatomy-of-a-hangover.html.

67

Highfield, R. The true meaning of the morning after. Daily Telegraph (January 3, 2003). https://www.telegraph.co.uk/technology/3304279/The-true-meaning-of-the-morning-after.html.

68

Huckvale, K., Venkatesh, S. & Christensen, H. Toward clinical digital phenotyping: A timely opportunity to consider purpose, quality, and safety. npj Digit. Med. (2019). https://doi.org/10.1038/s41746-019-0166-1.

69

Service, R. DNA could store all of the world’s data in one room. Science (2017). https:// doi.org/10.1126/science.aal0852.

70

Wooley, J. C. & Lin, H. S. Catalyzing Inquiry at the Interface of Computing and Biology (National Academies Press, 2005).

71

Campbell, E. G. et al. Data withholding in academic genetics: Evidence from a national survey. J. Am. Med. Assoc. (2002). https://doi.org/10.1001/jama.287.4.473.

72

Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

73

Royal Society. Data management and use: Governance in the 21st century. Joint report by the British Academy and the Royal Society (June 2017). https://royalsociety.org/topics-policy/projects/data-governance/.

74

Nurse, P. Biology must generate ideas as well as data. Nature 597, 305 (2021).

75

Фрэнсис Бэкон. Новый Органон / Пер. С. Красильщикова. М.: Рипол-Классик, 2021.

76

Bacon, F. The New Organon, or True Directions Concerning the Interpretation of Nature (1620). Trans. Spedding, J., Ellis, R. E. & Heath, D. D. (1863). http://intersci.ss.uci.edu/wiki/eBooks/BOOKS/Bacon/Novum%20Organum%20Bacon.pdf.

77

Steele, J. M. Babylonian observational and predictive astronomy. In Handbook of Archaeoastronomy and Ethnoastronomy (ed. Ruggles, C.), 1855–1862 (Springer, 2015).

78

Coveney, P. V., Dougherty, E. R. & Highfield, R. R. Big data need big theory too. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2016). https://doi.org/10.1098/rsta.2016.0153.

79

Highfield, R. & Carter, P. The Private Lives of Albert Einstein (Faber, 1993).

80

Highfield, R. Heroes of science. Royal Society (2012). https://royalsociety.org/science-events-and-lectures/2012/heroes-of-science/.

81

Newton, I. Philosophiae Naturalis Principia Mathematica (1687). https://doi.org/10.5479/sil.52126.39088015628399.

82

Highfield, R. Interview with Stephen Hawking. Daily Telegraph (October 18, 2001). https:// www.telegraph.co.uk/news/science/science-news/4766816/Interview-with-Stephen-Hawking.html.

83

Thompson, S. P. Calculus Made Easy. 2nd ed. (MacMillan, 1914). https://www.gutenberg.org/ebooks/33283.

84

Zeeman, E. Differential equations for the heartbeat and nerve impulse. In Biological Processes in Living Systems (ed. Waddington, C. H.), 8–67 (Routledge, 2017).

85

de Langhe, B., Puntoni, S. & Larrick, R. Linear thinking in a nonlinear world. Harvard Bus. Rev. 95(3), 130–139 (2017).

86

Cooper, N. G. & Lax, P. From cardinals to chaos: Reflections on the life and legacy of Stanislaw Ulam. Phys. Today (1989). https://doi.org/10.1063/1.2811052.

87

Монстр математики (фр.). – Прим. пер.

88

Lee, W. Y., Dawes, W. N. & Coull, J. D. The required aerodynamic simulation fidelity to usefully support a gas turbine digital twin for manufacturing. J. Glob. Power Propuls. Soc. 5, 15–27 (2021).

89

Sun, S. & Zhang, T. A 6M digital twin for modeling and simulation in subsurface reservoirs. Adv. Geo-Energy Res. 4, 349–351 (2020).

90

Sherwin, S. J., Formaggia, L., Peiró, J. & Franke, V. Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. Int. J. Numer. Methods Fluids 43, 673–700 (2003).

91

Luo, Y. (), Xiao, Q. (), Zhu, Q. () & Pan, G. (). Pulsed-jet propulsion of a squid-inspired swimmer at high Reynolds number. Phys. Fluids 32, 111901 (2020).

92

Scully, T. Neuroscience: The great squid hunt. Nature (2008). https://doi.org/10.1038/454934a.

93

Fasano, C. et al. Neuronal conduction of excitation without action potentials based on ceramide production. PLoS One (2007). https://doi.org/10.1371/journal.pone.0000612.

94

Häusser, M. The Hodgkin-Huxley theory of the action potential. Nat. Neurosci. (2000). https://doi.org/10.1038/81426.

95

Роджер Пенроуз в беседе с Дэвидом Эйзенбадом, «Вечер с сэром Роджером Пенроузом», Королевское общество, 8 июня 2022 г.

96

Barrow, J. D. Pi in the Sky: Counting, Thinking and Being (Clarendon Press, 1992).

97

Turing, A. M. On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. (1937). https://doi.org/10.1112/plms/s2–42.1.230.

98

Church, A. An unsolvable problem of elementary number theory. Am. J. Math. (1936). https://doi.org/10.2307/2371045.

99

Post, E. L. Finite combinatory processes—formulation 1. J. Symb. Log. 1, 103–105 (1936).

100

Pour-El, M. B. & Richards, J. I. Computability in Analysis and Physics: Perspectives in Logic (Cambridge University Press, 2017). https://doi.org/10.1017/9781316717325.

101

Технически их называют не непрерывными, то есть однородными или регулярными, за исключением однократной дифференциации, и они относятся к категории «слабого решения».

102

Pour-El, M. B. & Richards, I. The wave equation with computable initial data such that its unique solution is not computable. Adv. Math. (N. Y.) 39, 215–239 (1981).

103

Penrose, R. Précis of The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics. Behav. Brain Sci. (1990). https://doi.org/10.1017/s0140525x00080675.

104

Роджер Пенроуз. Новый ум короля. М.: Ленанд, 2019.

105

Roli, A., Jaeger, J. & Kauffman, S. A. How organisms come to know the world: Fundamental limits on artificial general intelligence. Front. Ecol. Evol. 9 (2022).

106

Dauben, J. W. Georg Cantor and Pope Leo XIII: Mathematics, theology, and the infinite. J. Hist. Ideas (1977). https://doi.org/10.2307/2708842.

107

Black, D. Beating floating point at its own game: Posit arithmetic. Inside HPC (2017). https://insidehpc.com/2017/08/beating-floating-point-game-posit-arithmetic/.

108

Gustafson, J. The End of Error: Unum Computing (Chapman & Hall, 2015).

109

Lorenz, E. Predictability: Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas? Am. Assoc. Adv. Sci., 139th Meeting (paper presented December 29, 1972).

110

Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. (1963). https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

111

Coveney, P. V. & Wan, S. On the calculation of equilibrium thermodynamic properties from molecular dynamics. Phys. Chem. Chem. Phys. (2016). https://doi.org/10.1039/c6cp02349e.

112

Hardaker, P. Weather in my life—Professor Tim Palmer FRS, president of the RMetS. Weather (2011). https://doi.org/10.1002/wea.814.

113

Boghosian, B. M., Fazendeiro, L. M., Lätt, J., Tang, H. & Coveney, P. V. New variational principles for locating periodic orbits of differential equations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 2211–2218 (2011).

114

Smith, J. H. et al. How neurons exploit fractal geometry to optimize their network connectivity. Sci. Rep. 11, 2332 (2021).

115

Cvitanović, P. Periodic orbits as the skeleton of classical and quantum chaos. Phys. D Nonlinear Phenom. 51, 138–151 (1991).

116

Coveney, P. V. & Wan, S. On the calculation of equilibrium thermodynamic properties from molecular dynamics. Phys. Chem. Chem. Phys. (2016). https://doi.org/10.1039/c6cp02349e.

117

Nee, S. Survival and weak chaos. R. Soc. Open Sci. (2018). https://doi.org/10.1098/ rsos.172181.

118

Boghosian, B. M., Coveney, P. V. & Wang, H. A. New pathology in the simulation of chaotic dynamical systems on digital computers. Adv. Theory Simulations (2019). https://doi.org/10.1002/adts.201900125.

119

Брюс Богосян, интервью с Роджером Хайфилдом, 11 сентября 2020 г.

120

Проблему можно решить, используя стохастическое округление или логарифмические неподвижные точки вместо чисел с плавающей запятой.

121

Sauer, T. D. Shadowing breakdown and large errors in dynamical simulations of physical systems. Phys. Rev. E 65, 36220 (2002).

122

Sauer, T. Computer arithmetic and sensitivity of natural measure. J. Differ. Equations Appl. 11, 669–676 (2005).

123

Pool, R. Is it healthy to be chaotic? Science (1989) https://doi.org/10.1126/science.2916117.

124

May, R. M. Uses and abuses of mathematics in biology. Science (2004). https://doi.org/10.1126/science.1094442.

125

Highfield, R. Ramanujan: Divining the origins of genius. Science Museum Blog (2016). https://blog.sciencemuseum.org.uk/ramanujan-divining-the-origins-of-genius/.

126

Herron, M. D. & Doebeli, M. Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol. (2013). https://doi.org/10.1371/journal.pbio.1001490.

127

Wiser, M. J., Ribeck, N. & Lenski, R. E. Long-term dynamics of adaptation in asexual populations. Science (2013). https://doi.org/10.1126/science.1243357.

128

Łuksza, M. & Lässig, M. A predictive fitness model for influenza. Nature (2014). https:// doi.org/10.1038/nature13087.

129

Nowak, M. A. & Highfield, R. Supercooperators: Altruism, Evolution, and Why We Need Each Other to Succeed (Canongate, 2011).

130

Russell, B., Slater, J. G. & Frohmann, B. Logical and Philosophical Papers, 1909–13, vol. 6 (Routledge, 1992).

131

Weinan, E. The dawning of a new era in applied mathematics. Not. Am. Math. Soc. 68, 565–571 (2021).

132

Feynman, R. P. The Feynman Lectures on Physics (Addison-Wesley, 1963–1965).

133

Marchant, J. The Human Cosmos (Dutton, 2020).

134

Магдалини Анастасиу, интервью с Роджером Хайфилдом, 24 августа 2021 г.

135

Harlow, F. H. & Metropolis, N. Computing & computers: Weapons simulation leads to the computer era. Los Alamos Sci., 132–141 (Winter/spring 1983).

136

Anderson, H. Metropolis, Monte Carlo and the MANIAC. Los Alamos Sci., 96–107 (February 1986).

137

Schweber, S. S. In the Shadow of the Bomb: Oppenheimer, Bethe, and the Moral Responsibility of the Scientist (Princeton University Press, 2013).

138

Rhodes, R. The Making of the Atomic Bomb (Simon & Schuster, 1986).

139

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

140

Battimelli, G. & Ciccotti, G. Berni Alder and the pioneering times of molecular simulation. Eur. Phys. J. H 43 (2018).

141

Alder, B. J. & Wainwright, T. E. Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209 (1957).

142

SEAC – электронный компьютер первого поколения, построенный в 1950 г. Национальным бюро стандартов США. – Прим. пер.

143

Moore, J. W. A personal view of the early development of computational neuroscience in the USA. Front. Comput. Neurosci. (2010). https://doi.org/10.3389/fncom.2010.00020.

144

Huxley, A. F. Ion movements during nerve activity. Ann. N. Y. Acad. Sci. 81, 221–246 (1959).

145

Chen, Z. & Auffray, C. (eds.). The Selected Papers of Denis Noble CBE FRS: A Journey in Physiology towards Enlightenment (Imperial College Press, 2012).

146

Денис Нобл, электронное письмо Роджеру Хайфилду, 16 января 2021 г.

147

Денис Нобл, интервью с Роджером Хайфилдом, 28 августа 2020 г.

148

Noble, D. A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potentials. J. Physiol. (1962). https://doi.org/10.1113/jphysiol.1962.sp006849.

149

McAllister, R. E., Noble, D. & Tsien, R. W. Reconstruction of the electrical activity of cardiac Purkinje fibres. J. Physiol. (1975). https://doi.org/10.1113/jphysiol.1975.sp011080.

150

DiFrancesco, D. & Noble, D. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos. Trans. R. Soc. B Biol. Sci. (1985). https://doi.org/10.1098/rstb.1985.0001.

151

Beeler, G. W. & Reuter, H. Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol. (1977). https://doi.org/10.1113/jphysiol.1977.sp011853.

152

Noble, D. Successes and failures in modeling heart cell electrophysiology. Heart Rhythm (2011). https://doi.org/10.1016/j.hrthm.2011.06.014.

153

Tomayko, J. Computers in spaceflight: The NASA experience. In Encyclopedia of Computer Science and Technology (eds. Kent, A. & Williams, J. G.), vol. 18 (CRC Press, 1987). https://history.nasa.gov/computers/Ch2-5.html.

154

Hey, T. & Papay, G. The Computing Universe: A Journey through a Revolution (Cambridge University Press, 2014).

155

Kaufmann, W. J. & Smarr, L. L. Supercomputing and the transformation of science. La Météorologie (1995). https://doi.org/10.4267/2042/52011.

156

Murray, C. The Supermen: The Story of Seymour Cray and the Technical Wizards behind the Supercomputer (Wiley, 1997).

157

Moore, G. E. Cramming more components onto integrated circuits. IEEE Solid-State Circuits Soc. Newsl. (2009). Reprinted from Electronics 38 (8): 114ff. (April 19, 1965). https://doi.org/10.1109/n-ssc.2006.4785860.

158

Dennard, R. H. et al. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits (1974). https://doi.org/10.1109/JSSC.1974.1050511.

159

Alowayyed, S., Groen, D., Coveney, P. V. & Hoekstra, A. G. Multiscale computing in the exascale era. J. Comput. Sci. (2017). https://doi.org/10.1016/j.jocs.2017.07.004.

160

Kogge, P. et al. ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems. Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Technical Represent. 15 (2008).

161

Рик Стивенс, интервью с Роджером Хайфилдом, 13 августа 2020 г.

162

Mirhoseini, A. et al. A graph placement methodology for fast chip design. Nature 594, 207–212 (2021).

163

Рик Стивенс, интервью с Роджером Хайфилдом, 28 сентября 2020 г.

164

Lee, C. T. & Amaro, R. E. Exascale computing: A new dawn for computational biology. Comput. Sci. Eng. (2018). https://doi.org/10.1109/MCSE.2018.05329812.

165

Nievergelt, J. Parallel methods for integrating ordinary differential equations. Commun. ACM 7, 731–733 (1964).

166

Lions, J.-L., Maday, Y. & Turinici, G. Résolution d’EDP par un schéma en temps «pararéel». Comptes Rendus l’Académie des Sci. – Ser. I—Math. 332, 661–668 (2001).

167

Eames, I. & Flor, J. B. New developments in understanding interfacial processes in turbulent flows. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 702–705 (2011).

168

Boghosian, B. M. et al. Unstable periodic orbits in the Lorenz attractor. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 2345–2353 (2011).

169

Jia, W. et al. Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning. Proc. Int. Conf. High Performance Comput., Net-working, Storage and Analysis (IEEE, 2020).

170

Zimmerman, M. I. et al. Citizen scientists create an exascale computer to combat COVID-19. bioRxiv (2020). https://doi.org/10.1101/2020.06.27.175430.

171

Mann, A. Nascent exascale supercomputers offer promise, present challenges. Proc. Natl. Acad. Sci. U. S. A. (2020). https://doi.org/10.1073/pnas.2015968117.

172

Oak Ridge National Laboratory. Frontier supercomputer debuts as world’s fastest, breaking exascale barrier. Press release (May 30, 2022). https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-barrier.

173

Golaz, J. C. et al. The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. J. Adv. Model. Earth Syst. (2019). https://doi.org/10.1029/2018MS001603.

174

Wagman, B. M., Lundquist, K. A., Tang, Q., Glascoe, L. G. & Bader, D. C. Examining the climate effects of a regional nuclear weapons exchange using a multiscale atmospheric modeling approach. J. Geophys. Res. Atmos. (2020). https://doi.org/10.1029/2020JD033056.

175

Reed, P. M. & Hadka, D. Evolving many-objective water management to exploit exascale computing. Water Resour. Res. (2014). https://doi.org/10.1002/2014WR015976.

176

Degrave, J. et al. Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602, 414–419 (2022).

177

Kates-Harbeck, J., Svyatkovskiy, A. & Tang, W. Predicting disruptive instabilities in controlled fusion plasmas through deep learning. Nature (2019). https://doi.org/10.1038/s41586-019-1116-4.

178

Coveney, P. V, Groen, D. & Hoekstra, A. G. Reliability and reproducibility in computational science: Implementing validation, verification and uncertainty quantification in silico. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 379, 20200409 (2021).

179

Coveney, P. V & Highfield, R. R. When we can trust computers (and when we can’t). Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 379, 20200067 (2021).

180

Johnson, N. F. et al. The online competition between pro- and anti-vaccination views. Nature 582, 230–233 (2020).

181

Perkel, J. M. Challenge to scientists: Does your ten-year-old code still run? Nature 584, 656–658 (2020).

182

Карен Уиллкокс. Прогнозирующие цифровые двойники: от физического моделирования к научному машинному обучению. CIS Digital Twin Days, 15 ноября 2021 | Лозанна, Швейцария.

183

VECMA. https://www.vecma.eu/.

184

VECMA Toolkit. https://www.vecma-toolkit.eu/.

185

Highfield, R. R. Coronavirus: Virtual pandemics. Science Museum Group Blog (2020). https://www.sciencemuseumgroup.org.uk/blog/coronavirus-virtual-pandemics/.

186

Edeling, W. et al. The impact of uncertainty on predictions of the CovidSim epidemiological code. Nat. Comput. Sci. 1, 128–135 (2021).

187

Тим Палмер. The Primacy of Doubt («Первостепенность сомнения») (Oxford University Press, 2022).

188

Jordan, J. et al. Extremely scalable spiking neuronal network simulation code: From laptops to exascale computers. Front. Neuroinform. (2018). https://doi.org/10.3389/fninf.2018.00002.

189

Hernandez-Boussard, T. et al. Digital twins for predictive oncology will be a paradigm shift for precision cancer care. Nat. Med. 27, 2065–2066 (2021).

190

Bhattacharya, T. et al. AI meets exascale computing: Advancing cancer research with large-scale high performance computing. Front. Oncol. 9 (2019).

191

Приложение А к переводу книги Луиджи Федерико Менебреа «Очерк аналитической машины, изобретенной Чарльзом Бэббиджем» (Notions sur la machine analytique de M. Charles Babbage). Scientific Memoirs: the Transactions of Foreign Academies of Science and Learned Societies, and from Foreign Journals (ed. Taylor, R.), vol. 3, 696 (Richard & John E. Taylor, 1843).

192

IBM. What Will We Make of This Moment? Annual report (2013). https://www.ibm.com/annualreport/2013/bin/assets/2013_ibm_annual.pdf.

193

IBM. 10 key marketing trends for 2017. IBM.com (December 2016). https://app.box.com/s/ez6qv90°6o2txk1fq69spc03b2l3iehd.

194

Первые золотоискатели Калифорнийской золотой лихорадки 1848–1855 гг. – Прим. пер.

195

Anderson, C. The end of theory: The data deluge makes the scientific method obsolete. Wired Mag. (2008). https://doi.org/10.1016/j.ecolmodel.2009.09.008.

196

Samuel, A. L. Some studies in machine learning. IBM J. Res. Dev. (1959).

197

McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. (1943). https://doi.org/10.1007/BF02478259.

198

Hutson, M. Robo-writers: The rise and risks of language-generating AI. Nature 591, 22–25 (2021).

199

Wurman, P. R. et al. Outracing champion Gran Turismo drivers with deep reinforcement learning. Nature 602, 223–228 (2022).

200

Heider, F. & Simmel, M. An experimental study of apparent behavior. Am. J. Psychol. 57, 243–259 (1944).

201

Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science (2018) https://doi.org/10.1126/science.aar6404.

202

Silver, D. et al. Mastering the game of Go without human knowledge. Nature (2017). https://doi.org/10.1038/nature24270.

203

Goodfellow, I. J. et al. Generative adversarial nets. Adv. Neural Inf. Process. Sys. (2014). https:// proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

204

Zhang, H. et al. StackGAN++: Realistic image synthesis with stacked generative adversarial networks. IEEE Trans. Pattern Anal. Mach. Intell. (2019). https://doi.org/10.1109/TPAMI.2018.2856256.

205

Davies, A. et al. Advancing mathematics by guiding human intuition with AI. Nature 600, 70–74 (2021); Fawzi, A., Balog, M., Huang, A. et al. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature 610, 47–53 (2022). https://doi.org/10.1038/s41586-022-05172-4.

206

Weinan E. The dawning of a new era in applied mathematics. Notices Am. Math. Soc., 68(4), 565–571 (2021).

207

Cheng, B., Engel, E. A., Behler, J., Dellago, C. & Ceriotti, M. Ab initio thermodynamics of liquid and solid water. Proc. Natl. Acad. Sci. 116, 1110–1115 (2019).

208

Lehman, C. D. et al. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern. Med. (2015). https://doi.org/10.1001/jamainternmed.2015.5231.

209

McKinney, S. M. et al. International evaluation of an AI system for breast cancer screening. Nature (2020). https://doi.org/10.1038/s41586-019-1799-6.

210

Lu, M. Y. et al. AI-based pathology predicts origins for cancers of unknown primary. Nature 594, 106–110 (2021).

211

Roberts, M. et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat. Mach. Intell. 3, 199–217 (2021).

212

Mei, X. et al. Artificial intelligence—enabled rapid diagnosis of patients with COVID-19. Nat. Med. 26, 1224–1228 (2020).

213

Ng, A. X-rays: The AI hype. IEEE Spectrum (2021). https://spectrum.ieee.org/andrew-ng-xrays-the-ai-hype.

214

Müller, U., Ivlev, S., Schulz, S. & Wölper, C. Automated crystal structure determination has its pitfalls: Correction to the crystal structures of iodine azide. Angew. Chemie Int. Ed. (2021). https://doi.org/10.1002/anie.202105666.

215

Джон Джампер, интервью с Роджером Хайфилдом, 9 декабря 2020 г.

216

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature (2021). https://doi.org/10.1038/S41586-021-03819-2.

217

Callaway, E. ‘The entire protein universe’: AI predicts shape of nearly every known protein. Nature 608, 15–16 (2022).

218

Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science (2021) https://doi.org/10.1126/science.abj8754.

219

Workman, P. The drug discoverer—reflecting on DeepMind’s AlphaFold artificial intelligence success what’s the real significance for protein folding research and drug discovery? Institute of Cancer Research, London (2021). https://www.icr.ac.uk/blogs/ the-drug-discoverer/page-details/reflecting-on-deepmind-s-alphafold-artificial-intel-ligence-success-what-s-the-real-significance-for-protein-folding-research-and-drug-discovery.

220

Пол Уоркман, электронное письмо Роджеру Хайфилду, 14 марта 2022 г.

221

Szegedy, C. et al. Intriguing properties of neural networks. 2nd Int. Conf. Learning Representations—Conf. Track Proc. (ICLR, 2014).

222

YouTube. A DARPA perspective on artificial intelligence (posted February 15, 2017). https://www.youtube.com/watch?v=-O01G3tSYpU.

223

Eykholt, K. et al. Robust physical-world attacks on deep learning visual classification. Proc. IEEE Comput. Soc. Conf.Comput. Vision and Pattern Recognition (2018). https://doi.org/10.1109/CVPR.2018.00175.

224

Highfield, R. Bill Gates and will.i.am argue for progress through investment in science. Science Museum Blog (2016). https://blog.sciencemuseum.org.uk/bill-gates-and-will-i-am-argue-for-progress-through-investment-in-science/.

225

Hawkins, D. M. The problem of overfitting. J. Chem. Inf. Comput. Sci. (2004). https://doi.org/10.1021/ci0342472.

226

Coveney, P. V. & Highfield, R. R. From digital hype to analogue reality: Universal simulation beyond the quantum and exascale eras. J. Comput. Sci. (2020). https://doi.org/10.1016/j.jocs.2020.101093.

227

Pathak, J., Lu, Z., Hunt, B. R., Girvan, M. & Ott, E. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data. Chaos (2017). https://doi.org/10.1063/1.5010300.

228

Pathak, J., Hunt, B., Girvan, M., Lu, Z. & Ott, E. Model-free prediction of large spatio-temporally chaotic systems from data: A reservoir computing approach. Phys. Rev. Lett. (2018). https://doi.org/10.1103/PhysRevLett.120.024102.

229

Federrath, C., Klessen, R. S., Iapichino, L. & Beattie, J. R. The sonic scale of interstellar turbulence. Nat. Astron. (2021). https://doi.org/10.1038/s41550-020-01282-z.

230

Wagner, G. & Weitzman, M. Climate Shock (Princeton University Press, 2016).

231

Taleb, N. N. The black swan: Why don’t we learn that we don’t learn? Paper presented at the US Department of Defense Highland Forum, Las Vegas (2004).

232

Succi, S. & Coveney, P. V. Big data: The end of the scientific method? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2019). https://doi.org/10.1098/rsta.2018.0145.

233

Wan, S., Sinclair, R. C. & Coveney, P. V. Uncertainty quantification in classical molecular dynamics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 379, 20200082 (2021).

234

Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and scalable predictive uncertainty estimation using deep ensembles. arXiv 1612.01474 (2016).

235

Hinton, G. Boltzmann machines. Encyclopedia of Machine Learning and Data Mining (2017). https://doi.org/10.1007/978-1-4899-7687-1_31.

236

García-Martín, E., Rodrigues, C. F., Riley, G. & Grahn, H. Estimation of energy consumption in machine learning. J. Parallel Distrib. Comput. 134, 75–88 (2019).

237

Thompson, N. C., Greenewald, K. & Lee, K. Deep learning’s diminishing returns. IEEE Spectrum (2021). https://spectrum.ieee.org/deep-learning-computational-cost.

238

Wright, L. G. et al. Deep physical neural networks trained with backpropagation. Nature 601, 549–555 (2022).

239

Succi, S. & Coveney, P. V. Big data: The end of the scientific method? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2019). https://doi.org/10.1098/rsta.2018.0145.

240

Calude, C. S. & Longo, G. The deluge of spurious correlations in big data. Found. Sci. (2017). https://doi.org/10.1007/s10699-016-9489-4.

241

Zernicka-Goetz, M. & Highfield, R. The Dance of Life (W. H. Allen, 2020).

242

Choudhary, A., Fox, G. & Hey, T. (eds.). AI for Science (World Scientific, in press 2022).

243

Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).

244

Erge, O. & van Oort, E. Combining physics-based and data-driven modeling in well construction: Hybrid fluid dynamics modeling. J. Nat. Gas Sci. Eng. 97, 104348 (2022).

245

Davis, J. J. et al. Antimicrobial resistance prediction in PATRIC and RAST. Sci. Rep. 6, 27930 (2016).

246

McSkimming, D. I., Rasheed, K. & Kannan, N. Classifying kinase conformations using a machine learning approach. BMC Bioinformatics 18, 86 (2017).

247

Rufa, D. A. et al. Towards chemical accuracy for alchemical free energy calculations with hybrid physics-based machine learning/molecular mechanics potentials. bioRxiv (2020). https://doi.org/10.1101/2020.07.29.227959.

248

Эрик Штальберг, интервью с Питером Ковени и Роджером Хайфилдом, 14 января 2022 г.

249

Bhati, A. P. et al. Pandemic drugs at pandemic speed: Infrastructure for accelerating COVID-19 drug discovery with hybrid machine learning and physics-based simulations on high-performance computers. Interface Focus 11, 20210018 (2021).

250

Wan, S., Bhati, A. P., Wade, A. D., Alfè, D. & Coveney, P. V. Thermodynamic and structural insights into the repurposing of drugs that bind to SARS-CoV-2 main protease. Mol. Syst. Des. Eng. (2022). https://doi.org/10.1039/D1ME00124H.

251

Clyde, A. et al. High-throughput virtual screening and validation of a SARS-CoV-2 main protease noncovalent inhibitor. J. Chem. Inf. Modeling 62 (1), 116–128 (2022).

252

Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

253

Kharazmi, E. et al. Identifiability and predictability of integer- and fractional-order epidemiological models using physics-informed neural networks. Nat. Comput. Sci. 1, 744–753 (2021).

254

Alber, M., et al. Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. Npj Digit. Med. 2, 115 (2019).

255

Einstein, A. The Ultimate Quotable Einstein (Princeton University Press, 2016).

256

Лат. «год чудес» – латинское выражение, применяемое к нескольким календарным годам, отмеченным необычными важными и позитивными событиями. – Прим. пер.

257

Highfield, R. & Carter, P. The Private Lives of Albert Einstein (Faber, 1993).

258

Wheeler, J. A. A Journey into Gravity and Spacetime (Scientific American Library/W. H. Freeman, 1990).

259

Clarke, B. Normal bone anatomy and physiology. Clin. J. Amer. Soc. Nephrol. (2008). https://doi.org/10.2215/CJN.04151206.

260

Brooks, S. V. Current topics for teaching skeletal muscle physiology. Amer. J. Physiol. – Adv. Physiol. Edu. (2003). https://doi.org/10.1152/advan.2003.27.4.171.

261

Chen, Z. & Auffray, C. (eds.). The Selected Papers of Denis Noble CBE FRS: A Journey in Physiology towards Enlightenment (Imperial College Press, 2012).

262

Wei, F. et al. Stress fiber anisotropy contributes to force-mode dependent chromatin stretching and gene upregulation in living cells. Nat. Commun. 11, 4902 (2020).

263

Noble, D. The Music of Life: Biology beyond the Genome (Oxford University Press, 2006).

264

Noble, D. Claude Bernard, the first systems biologist, and the future of physiology. Exp. Physiol. (2008). https://doi.org/10.1113/expphysiol.2007.038695.

265

Novikoff, A. B. The concept of integrative levels and biology. Science (1945). https://doi.org/10.1126/science.101.2618.209.

266

Srinivasan, B. A guide to the Michaelis-Menten equation: Steady state and beyond. FEBS J. (2021). https://doi.org/10.1111/febs.16124.

267

Anderson, H. Metropolis, Monte Carlo and the MANIAC. Los Alamos Sci. 96–107 (1986). https://permalink.lanl.gov/object/tr?what=info: lanl-repo/lareport/LA-UR-86-2600-05.

268

«Закон» на самом деле является аппроксимацией, поскольку надежно применим только к большим наборам атомов и молекул, когда колебания локальных концентраций можно игнорировать.

269

Clark, A. J. Post on DC’s Improbable Science website (2008). http://www.dcscience.net/tag/ajclark/.

270

Clark, A. J. The reaction between acetyl choline and muscle cells. J. Physiol. 61, 530–546 (1926).

271

Dance, A. Beyond coronavirus: The virus discoveries transforming biology. Nature 595, 22–25 (2021).

272

Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature (2020). https://doi.org/10.1038/s41586-020-2562-8.

273

Nakane, T. et al. Single-particle cryo-EM at atomic resolution. Nature 587, 152–156 (2020).

274

Singer, A. & Sigworth, F. J. Computational methods for single-particle cryo-EM. Ann. Rev.Biomed. Data Sci. 3(1), 163–190 (2020).

275

Sharp, P. M. & Hahn, B. H. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. (2011). https://doi.org/10.1101/cshperspect.a006841.

276

Korber, B. et al. Timing the ancestor of the HIV-1 pandemic strains. Science (2000). https://doi.org/10.1126/science.288.5472.1789.

277

Karplus, M. & McCammon, J. A. Molecular dynamics simulations of biomolecules. Nature Structural Biology (2002). https://doi.org/10.1038/nsb0902–646.

278

Stein, M., Gabdoulline, R. R. & Wade, R. C. Bridging from molecular simulation to biochemical networks. Curr. Opinion in Structural Biol. (2007). https://doi.org/10.1016/j.sbi.2007.03.014.

279

Smock, R. G. & Gierasch, L. M. Sending signals dynamically. Science (2009). https://doi.org/10.1126/science.1169377.

280

Shaw, D. E. et al. Anton 2: Raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer. SC ’14: Proc. Int. Conf. High Performance Comput., Networking, Storage and Analysis, 41–53 (2014). https://doi.org/10.1109/SC.2014.9.

281

Di Natale, F. et al. A massively parallel infrastructure for adaptive multiscale simulations: Modeling RAS initiation pathway for cancer. Proc. Int. Conf. High Performance Comput., Networking, Storage and Analysis (ACM, 2019). https://doi.org/10.1145/3295500.3356197.

282

Könnyu, B. et al. Gag-Pol processing during HIV-1 virion maturation: A systems biology approach. PLoS Comput. Biol. (2013). https://doi.org/10.1371/journal.pcbi.1003103.

283

Reddy, B. & Yin, J. Quantitative intracellular kinetics of HIV type 1. AIDS Res. Hum. Retroviruses (1999). https://doi.org/10.1089/088922299311457.

284

Charlotte Eccleston, R., Wan, S., Dalchau, N. & Coveney, P. V. The role of multiscale protein dynamics in antigen presentation and T lymphocyte recognition. Front. Immunol. (2017). https://doi.org/10.3389/fimmu.2017.00797.

285

Kim, H. & Yin, J. Effects of RNA splicing and post-transcriptional regulation on HIV-1 growth: A quantitative and integrated perspective. IEEE Proc. Sys. Biol. (2005). https://doi.org/10.1049/ip-syb:20050004.

286

Wang, Y. & Lai, L. H. Modeling the intracellular dynamics for Vif-APO mediated HIV-1 virus infection. Chinese Sci. Bull. (2010). https://doi.org/10.1007/s11434-010-3103-x.

287

Dalchau, N. et al. A peptide filtering relation quantifies MHC class I peptide optimization. PLoS Comput. Biol. (2011). https://doi.org/10.1371/journal.pcbi.1002144.

288

Нил Далчау, электронное письмо Питеру Ковени, 7 июля 2021 г.

289

Calis, J.J.A. et al. Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Comput. Biol. (2013). https://doi.org/10.1371/journal.pcbi.1003266.

290

Lever, M. et al. Architecture of a minimal signaling pathway explains the T-cell response to a 1 million-fold variation in antigen affinity and dose. Proc. Natl. Acad. Sci. U. S. A. (2016). https://doi.org/10.1073/pnas.1608820113.

291

Eccleston, R. C., Coveney, P. V. & Dalchau, N. Host genotype and time dependent antigen presentation of viral peptides: Predictions from theory. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-14415-8.

292

Boulanger, D.S.M. et al. A mechanistic model for predicting cell surface presentation of competing peptides by MHC class I molecules. Front. Immunol. 9, 1538 (2018).

293

Wan, S., Flower, D. R. & Coveney, P. V. Toward an atomistic understanding of the immune synapse: Large-scale molecular dynamics simulation of a membrane-embedded TCR-pMHC–CD4 complex. Mol. Immunol. 45, 1221–1230 (2008).

294

Eccleston, R. C., Wan, S., Dalchau, N. & Coveney, P. V. The role of multiscale protein dynamics in antigen presentation and T lymphocyte recognition. Front. Immunol. 8, 797 (2017).

295

Lever, M., Maini, P. K., van der Merwe, P. A. & Dushek, O. Phenotypic models of T cell activation. Nat. Rev. Immunol. 14, 619–629 (2014).

296

Lever, M. et al. Architecture of a minimal signaling pathway explains the T-cell response to a 1 million-fold variation in antigen affinity and dose. Proc. Natl. Acad. Sci. U. S. A. (2016). https://doi.org/10.1073/pnas.1608820113.

297

Омер Душек, интервью с Роджером Хайфилдом, 27 июля 2021 г.

298

Омер Душек, электронное письмо Роджеру Хайфилду, 5 сентября 2021 г.

299

Pettmann, J. et al. The discriminatory power of the T cell receptor. Elife 10, e67092 (2021).

300

Омер Душек, интервью с Роджером Хайфилдом, 27 июля 2021 г.

301

Coulson, C. A. Samuel Francis Boys, 1911–1972. Biogr. Mem. Fellows R. Soc. 19, 95–115 (1973).

302

Bullard, E. Computers and Their Role in the Physical Sciences (Gordon and Breach, 1970).

303

Christov, C. Z. et al. Conformational effects on the pro-S hydrogen abstraction reaction in cyclooxygenase-1: An integrated QM/MM and MD study. Biophys. J. 104, L5–L7 (2013).

304

Bhati, A. P. & Coveney, P. V. Large scale study of ligand-protein relative binding free energy calculations: Actionable predictions from statistically robust protocols. Chem-Rxiv (2021). https://doi.org/10.26434/chemrxiv-2021-zdzng.

305

DiMasi, J. A., Grabowski, H. G. & Hansen, R. W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ. (2016). https://doi.org/10.1016/j.jhealeco.2016.01.012.

306

Turner, E. H., Matthews, A. M., Linardatos, E., Tell, R. A. & Rosenthal, R. Selective publication of antidepressant trials and its influence on apparent efficacy. N. Engl. J. Med. (2008). https://doi.org/10.1056/NEJMsa065779.

307

Jefferson, T. et al. Neuraminidase inhibitors for preventing and treating influenza in adults and children. Cochrane Database Sys. Rev. (2014). https://doi.org/10.1002/14651858.CD008965.pub4.

308

Leucht, S., Helfer, B., Gartlehner, G. & Davis, J. M. How effective are common medications?: A perspective based on meta-analyses of major drugs. BMC Med. (2015). https://doi.org/10.1186/s12916-015-0494-1.

309

Bohacek, R. S., McMartin, C. & Guida, W. C. The art and practice of structure-based drug design: A molecular modeling perspective. Med. Res. Rev. 16, 3–50 (1996).

310

Wright, D. W., Hall, B. A., Kenway, O. A., Jha, S. & Coveney, P. V. Computing clinically relevant binding free energies of HIV-1 protease inhibitors. J. Chem. Theory Comput. (2014). https://doi.org/10.1021/ct4007037.

311

Vassaux, M., Wan, S., Edeling, W. & Coveney, P. V. Ensembles are required to handle aleatoric and parametric uncertainty in molecular dynamics simulation. J. Chem. Theory Comput. (2021). https://doi.org/10.1021/acs.jctc.1c00526.

312

Wan, S. et al. Rapid and reliable binding affinity prediction of bromodomain inhibitors: A computational study. J. Chem. Theory Comput. (2017). https://doi.org/10.1021/acs.jctc.6b00794.

313

Wan, S., Bhati, A. P., Zasada, S. J. & Coveney, P. V. Rapid, accurate, precise and reproducible ligand—protein binding free energy prediction. Interface Focus 10, 20200007 (2020).

314

Wright, D. W., Hall, B. A., Kenway, O. A., Jha, S. & Coveney, P. V. Computing clinically relevant binding free energies of HIV-1 protease inhibitors. J. Chem. Theory Comput. (2014). https://doi.org/10.1021/ct4007037.

315

Sloot, P.M.A. et al. HIV decision support: From molecule to man. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 2691–2703 (2009).

316

Fowler, P. W. et al. Robust prediction of resistance to trimethoprim in Staphylococcus aureus. Cell Chem. Biol. 25, 339–349 (2018).

317

Fowler, P. W. How quickly can we predict trimethoprim resistance using alchemical free energy methods? Interface Focus 10, 20190141 (2020).

318

Global Pathogen Analysis System. https://gpas.cloud/.

319

Zernicka-Goetz, M. & Highfield, R. The Dance of Life (W. H. Allen, 2020).

320

Nowak, M. A. & Highfield, R. Supercooperators: Altruism, Evolution, and Why We Need Each Other to Succeed (Canongate, 2011).

321

Мафусаил – бутылка шампанского объемом 6 литров. – Прим. пер.

322

Bhati, A. P., Wan, S. & Coveney, P. V. Ensemble-based replica exchange alchemical free energy methods: The effect of protein mutations on inhibitor binding. J. Chem. Theory Comput. (2019). https://doi.org/10.1021/acs.jctc.8b01118.

323

Wan, S. et al. The effect of protein mutations on drug binding suggests ensuing personalised drug selection. Sci. Rep. 11, 13452 (2021).

324

Sadiq, S. K. et al. Patient-specific simulation as a basis for clinical decision-making. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2008). https://doi.org/10.1098/rsta.2008.0100.

325

Бланка Родригес, электронное письмо Роджеру Хайфилду, 27 января 2021 г.

326

Passini, E. et al. Human in silico drug trials demonstrate higher accuracy than animal models in predicting clinical pro-arrhythmic cardiotoxicity. Front. Physiol. (2017). https://doi.org/10.3389/fphys.2017.00668.

327

Horby, P. et al. Effect of hydroxychloroquine in hospitalized patients with COVID-19: Preliminary results from a multi-centre, randomized, controlled trial. medRxiv (2020). https://doi.org/10.1101/2020.07.15.20151852.

328

Aguado-Sierra, J. et al. In-silico clinical trial using high performance computational modeling of a virtual human cardiac population to assess drug-induced arrhythmic risk. medRxiv (2021). https://doi.org/10.1101/2021.04.21.21255870.

329

Коллин Э. Клэнси, электронное письмо Роджеру Хайфилду, 19 января 2022 г.

330

Yang, P.-C. et al. A computational pipeline to predict cardiotoxicity. Circ. Res. (2020). https://doi.org/10.1161/circresaha.119.316404.

331

Харди Г. Г. Апология математика / Пер. Ю. Каллистратовой. М.: АСТ, 2022.

332

Hardy, G. H. & Snow, C. P. A Mathematician’s Apology (Cambridge University Press, 2012).

333

Leduc, S. The mechanism of life. Arch. Roentgen Ray (1911). https://doi.org/10.1259/arr.1911.0008.

334

Thompson, D. W. On Growth and Form (Cambridge University Press, 1992).

335

Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. B Biol. Sci. (1952). https://doi.org/10.1098/rstb.1952.0012.

336

Murray, J. D. Mathematical Biology: I. An Introduction, vol. 17 (Springer, 2002).

337

Highfield, R. & Rooney, D. The spirit of Alan Turing. Science Museum Blog (2012). https:// blog.sciencemuseum.org.uk/the-spirit-of-alan-turing/.

338

Castets, V., Dulos, E., Boissonade, J. & De Kepper, P. Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953 (1990).

339

Liu, R. T., Liaw, S. S. & Maini, P. K. Two-stage Turing model for generating pigment patterns on the leopard and the jaguar. Phys. Rev. E—Stat. Nonlinear, Soft Matter Phys. (2006). https://doi.org/10.1103/PhysRevE.74.011914.

340

Hamada, H. In search of Turing in vivo: Understanding nodal and lefty behavior. Developmental Cell (2012). https://doi.org/10.1016/j.devcel.2012.05.003.

341

Sick, S., Reinker, S., Timmer, J. & Schlake, T. WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science (2006). https://doi.org/10.1126/science.1130088.

342

Watson, J. D. & Crick, F.H.C. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

343

Babu, K. & Koushika, S. P. Sydney Brenner (1927–2019). Curr. Sci. 116, 2106–2109 (2019).

344

Crick, F.H.C. Project K: “The complete solution of E. coli.” Perspect. Biol. Med. 17, 67–70 (1973).

345

Morowitz, H. J. The completeness of molecular biology. Isr. J. Med. Sci. 20, 750–753 (1984).

346

Domach, M. M. & Shuler, M. L. A finite representation model for an asynchronous culture of E. coli. Biotechnol. Bioeng. 26, 877–884 (1984).

347

16 Shimobayashi, S. F., Ronceray, P., Sanders, D. W., Haataja, M. P. & Brangwynne, C. P. Nucleation landscape of biomolecular condensates. Nature (2021). https://doi.org/10.1038/s41586-021-03905-5.

348

Venter, J. C. A Life Decoded: My Genome, My Life (Viking, 2007).

349

Tomita, M. et al. E-CELL: Software environment for whole-cell simulation. Bioinformatics (1999). https://doi.org/10.1093/bioinformatics/15.1.72.

350

Коичи Такахаси, электронное письмо Питеру Ковени и Роджеру Хайфилду, 13 октября 2021 г.

351

Fraser, C. M. et al. The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403 (1995).

352

Karr, J. R. et al. A whole-cell computational model predicts phenotype from genotype. Cell (2012). https://doi.org/10.1016/j.cell.2012.05.044.

353

Маркус Коверт, интервью с Питером Ковени и Роджером Хайфилдом, 6 августа 2021 г.

354

Glass, J. I. et al. Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci. U. S. A. (2006). https://doi.org/10.1073/pnas.0510013103.

355

Sanghvi, J. C. et al. Accelerated discovery via a whole-cell model. Nat. Methods 10, 1192–1195 (2013).

356

Маркус Коверт, электронное письмо Питеру Ковени и Роджеру Хайфилду, 14 сентября 2021 г.

357

Hutchison, C. A. et al. Design and synthesis of a minimal bacterial genome. Science (2016). https://doi.org/10.1126/science.aad6253.

358

Highfield, R. J. Craig Venter sequenced the human genome. Now he wants to convert DNA into a digital signal. Wired UK (2013). https://www.wired.co.uk/article/j-craig-venter-interview.

359

Крейг Вентер, интервью с Питером Ковени и Роджером Хайфилдом, 29 декабря 2021 г.

360

Thornburg, Z. R. et al. Fundamental behaviors emerge from simulations of a living minimal cell. Cell 185, 345–360 (2022).

361

Маркус Коверт, электронное письмо Питеру Ковени и Роджеру Хайфилду, 13 сентября 2021 г.

362

Macklin, D. N. et al. Simultaneous cross-evaluation of heterogeneous E. coli datasets via mechanistic simulation. Science (2020). https://doi.org/10.1126/science.aav3751.

363

Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).

364

Johnson, G. T. et al. CellPACK: A virtual mesoscope to model and visualize structural systems biology. Nat. Methods 12, 85–91 (2015).

365

Мартина Маритан, Дэвид Гудселл и Людовик Отин, интервью с Роджером Хайфилдом, 20 мая 2021 г.

366

Там же.

367

Wodke, J.A.H. et al. MyMpn: A database for the systems biology model organism Mycoplasma pneumoniae. Nucleic Acids Res. 43, D618–D623 (2015).

368

Schaff, J., Fink, C. C., Slepchenko, B., Carson, J. H. & Loew, L. M. A general computational framework for modeling cellular structure and function. Biophys. J. 73, 1135–1146 (1997).

369

Neves, S. R. Developing models in Virtual Cell. Sci. Signal. (2011). https://doi.org/10.1126/scisignal.2001970.

370

Лес Лоу и Михаил Блинов, интервью с Роджером Хайфилдом, 17 октября 2020 г.

371

Falkenberg, C. V. et al. Fragility of foot process morphology in kidney podocytes arises from chaotic spatial propagation of cytoskeletal instability. PloS Comput. Biol. 13, e1005433 (2017).

372

Singla, J. et al. Opportunities and challenges in building a spatiotemporal multi-scale model of the human pancreatic β cell. Cell (2018). https://doi.org/10.1016/j.cell.2018.03.014.

373

Novak, I. L. & Slepchenko, B. M. A conservative algorithm for parabolic problems in domains with moving boundaries. J. Comput. Phys. 270, 203–213 (2014).

374

Лес Лоу, электронное письмо Питеру Ковени и Роджеру Хайфилду, 13 июля 2021 г.

375

Cowan, A. E., Mendes, P. & Blinov, M. L. ModelBricks—modules for reproducible modeling improving model annotation and provenance. Npj Syst. Biol. Appl. (2019). https://doi.org/10.1038/s41540-019-0114-3.

376

Nurse, P. Systems biology: Understanding cells. Nature 424, 883 (2003).

377

Пол Нерс, интервью с Питером Ковени и Роджером Хайфилдом, 25 сентября 2021 г.

378

Klumpe, H. et al. The context-dependent, combinatorial logic of BMP signaling. bioRxiv (2020). https://doi.org/10.1101/2020.12.08.416503.

379

Nurse, P. & Hayles, J. The cell in an era of systems biology. Cell 144, 850–854 (2011).

380

Nurse, P. Life, logic and information. Nature (2008). https://doi.org/10.1038/454424a.

381

Butters, T. D., et al. Mechanistic links between Na+ channel (SCN5A) mutations and impaired cardiac pacemaking in sick sinus syndrome. Circ. Res. 107, 126–137 (2010).

382

Selvaggio, G. et al. Hybrid epithelial-mesenchymal phenotypes are controlled by mi- croenvironmental factors. Cancer Res. (2020). https://doi.org/10.1158/0008-5472.CAN-19-3147.

383

Celada, F. & Seiden, P. E. A computer model of cellular interactions in the immune system. Immunology Today (1992). https://doi.org/10.1016/0167-5699(92)90135-T.

384

Shilts, J., Severin, Y., Galaway, F. et al. A physical wiring diagram for the human immune system. Nature 608, 397–404 (2022). https://doi.org/10.1038/s41586-022-05028-x.

385

Celli, S. et al. How many dendritic cells are required to initiate a T-cell response? Blood (2012). https://doi.org/10.1182/blood-2012-01-408260.

386

Cockrell, R. C. & An, G. Examining the controllability of sepsis using genetic algorithms on an agent-based model of systemic inflammation. PloS Comput. Biol. (2018). https://doi.org/10.1371/journal.pcbi.1005876.

387

Ghaffarizadeh, A., Heiland, R., Friedman, S., Mumenthaler, S. & Macklin, P. PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems. PloS Comput. Biol. 14, e1005991 (2018).

388

Saxena, G., Ponce-de-Leon, M., Montagud, A., Vicente Dorca, D. & Valencia, A. BioFVM-X: An MPI+OpenMP 3-D simulator for biological systems. In Computational Methods in Systems Biology (eds. Cinquemani, E. & Paulevé, L.), 266–279 (Springer, 2021).

389

Читатели могут сами опробовать эту модель в веб-браузере: https://nanohub.org/tools/pc4cancerimmune.

390

Ozik, J. et al. High-throughput cancer hypothesis testing with an integrated PhysiCell- EMEWS workflow. BMC Bioinformatics 19, 483 (2018).

391

Getz, M. et al. Iterative community-driven development of a SARS-CoV-2 tissue simulator. bioRxiv (2021). https://doi.org/10.1101/2020.04.02.019075.

392

Fertig, E. J., Jaffee, E. M., Macklin, P., Stearns, V. & Wang, C. Forecasting cancer: From precision to predictive medicine. Med 2, 1004–1010 (2021).

393

Courtemanche, M. & Winfree, A. T. Re-entrant rotating waves in a Beeler—Reuter based model of two-dimensional cardiac electrical activity. Int. J. Bifurc. Chaos (1991). https://doi.org/10.1142/s0218127491000336.

394

Priebe, L. & Beuckelmann, D. J. Simulation study of cellular electric properties in heart failure. Circ. Res. (1998). https://doi.org/10.1161/01.RES.82.11.1206.

395

Marage, P. The Solvay Councils and the Birth of Modern Physics (Birkhäuser Verlag, 1999). https://doi.org/10.1007/978-3-0348-7703-9.

396

Coveney, P. V., Dougherty, E. R. & Highfield, R. R. Big data need big theory too. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2016). https://doi.org/10.1098/rsta.2016.0153.

397

Coveney, P. V., Boon, J. P. & Succi, S. Bridging the gaps at the physics-chemistry-biology interface. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2016). https://doi.org/10.1098/rsta.2016.0335.

398

Di Natale, F. et al. A massively parallel infrastructure for adaptive multiscale simulations: Modeling RAS initiation pathway for cancer. Proc. Int. Conf. High Performance Comput., Networking, Storage and Analysis (ACM, 2019). https://doi.org/10.1145/3295500.3356197.

399

Saadi, A. A., et al. IMPECCABLE: Integrated modeling pipeline for COVID cure by assessing better leads. 50th Int. Conf. Parallel Process. (ACM, 2021). https://doi.org/10.1145/3472456.3473524.

400

Wan, S., Bhati, A. P., Zasada, S. J. & Coveney, P. V. Rapid, accurate, precise and reproducible ligand—protein binding free energy prediction. Interface Focus 10, 20200007 (2020).

401

Warshel, A. & Karplus, M. Calculation of ground and excited state potential surfaces of conjugated molecules: I. Formulation and parametrization. J. Am. Chem. Soc. 94, 5612–5625 (1972).

402

Warshel, A. & Levitt, M. Theoretical studies of enzymic reactions: Dielectric, electro- static and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103, 227–249 (1976).

403

Delgado-Buscalioni, R. & Coveney, P. V. Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow. Phys. Rev. E. – Stat. Nonlinear Soft Matter Phys. 67, 46704 (2003).

404

Carrel, A. On the permanent life of tissues outside of the organism. J. Exp. Med. 15, 516–528 (1912).

405

Rudolph, F. et al. Deconstructing sarcomeric structure—function relations in titin-BioID knock-in mice. Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-16929-8.

406

Zernicka-Goetz, M. & Highfield, R. The Dance of Life (W. H. Allen, 2020).

407

Hunter, P. J. & Borg, T. K. Integration from proteins to organs: The Physiome Project. Nature Rev. Mol. Cell Biol. (2003). https://doi.org/10.1038/nrm1054.

408

LeGrice, I. J. et al. Laminar structure of the heart: Ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. – Heart Circ. Physiol. (1995). https://doi.org/10.1152/ajpheart.1995.269.2.h571.

409

Chen, Z. & Auffray, C. (eds.). The Selected Papers of Denis Noble CBE FRS: A Journey in Physiology towards Enlightenment (Imperial College Press, 2012).

410

Денис Нобл, электронное письмо Роджеру Хайфилду, 28 мая 2021 г.

411

Hunter, P. J., McNaughton, P. A. & Noble, D. Analytical models of propagation in excitable cells. Prog. Biophys. Mol. Biol. 30, 99–144 (1975).

412

LeGrice, I. J., Hunter, P. J. & Smaill, B. H. Laminar structure of the heart: A mathematical model. Am. J. Physiol. – Heart Circ. Physiol. (1997). https://doi.org/10.1152/ajpheart.1997.272.5.h2466.

413

Smith, N. P., Pullan, A. J. & Hunter, P. J. Generation of an anatomically based geometric coronary model. Ann. Biomed. Eng. (2000). https://doi.org/10.1114/1.250.

414

Hunter, P. J., Kohl, P. & Noble, D. Integrative models of the heart: Achievements and limitations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2001). https://doi.org/10.1098/rsta.2001.0816.

415

Chen, Z. & Auffray, C. (eds.). The Selected Papers of Denis Noble CBE FRS: A Journey in Physiology towards Enlightenment (Imperial College Press, 2012).

416

Southern, J. et al. Multi-scale computational modelling in biology and physiology. Prog. Biophys. Mol. Biol. (2008). https://doi.org/10.1016/j.pbiomolbio.2007.07.019.

417

Baillargeon, B., Rebelo, N., Fox, D. D., Taylor, R. L. & Kuhl, E. The Living Heart Project: A robust and integrative simulator for human heart function. Eur. J. Mech. A/Solids (2014). https://doi.org/10.1016/j.euromechsol.2014.04.001.

418

Watanabe, H., Sugiura, S. & Hisada, T. The looped heart does not save energy by main- taining the momentum of blood flowing in the ventricle. Am. J. Physiol. Heart Circ. Physiol. 294, H2191–H2196 (2008).

419

Мариано Васкес, интервью с Роджером Хайфилдом, 4 сентября 2021 г.

420

Мариано Васкес, электронное письмо Роджеру Хайфилду от 23 января 2021 г.

421

Zhao, J. et al. Three-dimensional integrated functional, structural, and computational mapping to define the structural “fingerprints” of heart-specific atrial fibrillation drivers in human heart ex vivo. J. Am. Heart Assoc. (2017). https://doi.org/10.1161/JAHA.117.005922.

422

Марк Палмер, Digital Twins in Healthcare, конференция CompBioMed, 17 сентября 2021 г.

423

Corral-Acero, J. et al. The “Digital Twin” to enable the vision of precision cardiology. Eur. Heart J. (2020). https://doi.org/10.1093/eurheartj/ehaa159.

424

Chen, Z. et al. Biophysical modeling predicts ventricular tachycardia inducibility and circuit morphology: A combined clinical validation and computer modeling approach. J. Cardiovasc. Electrophysiol. (2016). https://doi.org/10.1111/jce.12991.

425

Kayvanpour, E. et al. Towards personalized cardiology: Multi-scale modeling of the failing heart. PloS One (2015). https://doi.org/10.1371/journal.pone.0134869.

426

Гернот Планк, Automating Workflows for Creating Digital Twins of Cardiac Electrophysiology from Non-invasive Data, конференция CompBioMed, 16 сентября 2021 г.

427

Gillette, K. et al. A framework for the generation of digital twins of cardiac electrophysiology from clinical 12-leads ECGs. Med. Image Anal., 102080 (2021). https://doi.org/10.1016/j.media.2021.102080.

428

Ushenin, K., Kalinin, V., Gitinova, S., Sopov, O. & Solovyova, O. Parameter variations in personalized electrophysiological models of human heart ventricles. PloS One 16, e0249062 (2021).

429

El Faquir, N. et al. Patient-specific computer simulation in TAVR with the self- expanding Evolut R valve. JACC Cardiovasc. Interv. (2020). https://doi.org/10.1016/j.jcin.2020.04.018.

430

Morrison, T. M., Dreher, M. L., Nagaraja, S., Angelone, L. M. & Kainz, W. The role of computational modeling and simulation in the total product life cycle of peripheral vascular devices. J. Med. Devices, Trans. ASME (2017). https://doi.org/10.1115/1.4035866.

431

Patel, M. R. et al. 1-year impact on medical practice and clinical outcomes of FFRCT: The ADVANCE Registry. JACC Cardiovasc. Imaging (2020). https://doi.org/10.1016/j.jcmg.2019.03.003.

432

Baillargeon, B., Rebelo, N., Fox, D. D., Taylor, R. L. & Kuhl, E. The Living Heart Project: A robust and integrative simulator for human heart function. Eur. J. Mech. A/Solids (2014). https://doi.org/10.1016/j.euromechsol.2014.04.001.

433

Viceconti, M. et al. In silico trials: Verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods 185, 120–127 (2021).

434

Sahli Costabal, F. et al. Multiscale characterization of heart failure. Acta Biomater (2019). https://doi.org/10.1016/j.actbio.2018.12.053.

435

Roney, C. H. et al. Variability in pulmonary vein electrophysiology and fibrosis deter- mines arrhythmia susceptibility and dynamics. PloS Comput. Biol. (2018). https://doi.org/10.1371/journal.pcbi.1006166.

436

Boyle, P. M. et al. Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nat. Biomed. Eng. 3, 870–879 (2019).

437

Arevalo, H. J. et al. Arrhythmia risk stratification of patients after myocardial infarc- tion using personalized heart models. Nat. Commun. (2016). https://doi.org/10.1038/ncomms11437.

438

Hose, D. R. et al. Cardiovascular models for personalised medicine: Where now and where next? Med. Eng. Phys. 72, 38–48 (2019).

439

Kaboudian, A., Cherry, E. M. & Fenton, F. H. Real-time interactive simulations of large- scale systems on personal computers and cell phones: Toward patient-specific heart modeling and other applications. Sci. Adv. 5 (2019).

440

Стив Нидерер, интервью с Роджером Хайфилдом, 10 августа 2021 г.

441

Mandel, W., Oulbacha, R., Roy-Beaudry, M., Parent, S. & Kadoury, S. Image-guided tethering spine surgery with outcome prediction using spatio-temporal dynamic networks. IEEE Trans. Med. Imaging 40, 491–502 (2021).

442

Niederer, S. A., Lumens, J. & Trayanova, N. A. Computational models in cardiology. Nat. Rev. Cardiol. 16, 100–111 (2019).

443

Гернот Планк, электронное письмо Питеру Ковени, 4 октября 2021 г.

444

Moss, R. et al. Virtual patients and sensitivity analysis of the Guyton model of blood pressure regulation: Towards individualized models of whole-body physiology. PloS Comput. Biol. 8, e1002571 (2012).

445

Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Clarendon Press, 2001).

446

Succi, S. The Lattice Boltzmann Equation for Complex States of Flowing Matter. (Oxford University Press, 2018).

447

Coveney, P., Díaz-Zuccarini, V., Hunter, P. & Viceconti, M. Computational Biomedicine (Oxford University Press, 2014).

448

Zacharoudiou, I., McCullough, J.W.S. & Coveney, P. V. Development and performance of HemeLB GPU code for human-scale blood flow simulation. Comput. Phys. Commun., 282 108548 (2023), https://doi.org/10.1016/j.cpc.2022.108548.

449

McCullough, J. W. S. et al. Towards blood flow in the virtual human: Efficient self- coupling of HemeLB. Interface Focus (December 2020). https://doi.org/10.1098/rsfs.2019.0119.

450

Hoekstra, A. G., Chopard, B., Coster, D., Zwart, S. P. & Coveney, P. V. Multiscale computing for science and engineering in the era of exascale performance. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2019). https://doi.org/10.1098/rsta.2018.0144.

451

McCullough, J.W.S. & Coveney, P. V. High fidelity physiological blood flow in patient- specific arteriovenous fistula for clinical applications. Sci. Rep. 11(1), 22301 (2020).

452

Randles, A., Draeger, E. W., Oppelstrup, T., Krauss, L. & Gunnels, J. A. Massively parallel models of the human circulatory system. Proc. Int. Conf. High Performance Comput., Net- working, Storage and Analysis (ACM, 2015). https://doi.org/10.1145/2807591.2807676.

453

Augustin, C. M. et al. A computationally efficient physiologically comprehensive 3D–0D closed-loop model of the heart and circulation. Comput. Methods Appl. Mech. Eng. 386, 114092 (2021).

454

Гернот Планк, электронное письмо Питеру Ковени, 4 октября 2021 г.

455

Holmes, R. Science fiction: The science that fed Frankenstein. Nature (2016). https://doi.org/10.1038/535490a.

456

Пер. В. Микушевича.

457

St. Martin’s Hall, “On the Advisableness of Improving Natural Knowledge”, Fortnightly Review, 1866, vol. 3, 62.

458

Sharma, D. et al. Technical note: In silico imaging tools from the VICTRE clinical trial. Med. Phys. (2019). https://doi.org/10.1002/mp.13674.

459

Ваньи Фу, «i-Phantom Framework», конференция CompBioMed, 17 сентября 2021 г.

460

Питер Хантер, интервью с Питером Ковени и Роджером Хайфилдом, 23 октября 2020 г.

461

Hunter, P. J. & Borg, T. K. Integration from proteins to organs: The Physiome Project. Nature Rev. Mol. Cell Biol. (2003). https://doi.org/10.1038/nrm1054.

462

De Micheli, A. J. et al. Single-cell analysis of the muscle stem cell hierarchy identifies heterotypic communication signals involved in skeletal muscle regeneration. Cell Rep. (2020). https://doi.org/10.1016/j.celrep.2020.02.067.

463

Robinson, J. L. et al. An atlas of human metabolism. Sci. Signal. 13 (2020).

464

Liu, Q., Wu, B., Zeng, S. & Luo, Q. Human physiome based on the high-resolution dataset of human body structure. Prog. Nat. Sci. 18, 921–925 (2008).

465

Benias, P. C. et al. Structure and distribution of an unrecognized interstitium in human tissues. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-23062-6.

466

Highfield, R. Cravings: How to trick the brain into thinking you’re full. Newsweek (Jan- uary 24, 2015). https://www.newsweek.com/2015/01/30/cravings-how-food-controls-our-brains-301495.html.

467

Питер Хантер, интервью с Питером Ковени и Роджером Хайфилдом, 23 октября 2020.

468

National Institutes of Health. Stimulating peripheral activity to relieve conditions (SPARC) (2022). https://commonfund.nih.gov/sparc/.

469

Питер Хантер, интервью с Питером Ковени и Роджером Хайфилдом, 23 октября 2020.

470

Costa, M. C. et al. Biomechanical assessment of vertebrae with lytic metastases with subject-specific finite element models. J. Mech. Behav. Biomed. Mater. (2019). https:// doi.org/10.1016/j.jmbbm.2019.06.027.

471

Grünwald, A.T.D., Roy, S., Alves-Pinto, A. & Lampe, R. Assessment of adolescent idio- pathic scoliosis from body scanner image by finite element simulations. PloS One 16, e0243736 (2021).

472

Pitto, L. et al. SimCP: A simulation platform to predict gait performance following orthopedic intervention in children with cerebral palsy. Front. Neurorobot. 13, 54 (2019).

473

Bozkurt, S. et al. Computational modelling of patient specific spring assisted lambdoid craniosynostosis correction. Sci. Rep. 10, 18693 (2020).

474

Tawhai, M. H. & Hunter, P. J. Modeling water vapor and heat transfer in the normal and the intubated airways. Ann. Biomed. Eng. (2004). https://doi.org/10.1023/B: ABME.0000019180.03565.7e.

475

Lin, C. L., Tawhai, M. H., McLennan, G. & Hoffman, E. A. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir. Physiol. Neurobiol. (2007). https://doi.org/10.1016/j.resp.2007.02.006.

476

Burrowes, K. S., Swan, A. J., Warren, N. J. & Tawhai, M. H. Towards a virtual lung: Multi- scale, multi-physics modelling of the pulmonary system. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2008). https://doi.org/10.1098/rsta.2008.0073.

477

Auckland Bioengineering Institute. MedTech CORE—lung simulation. https://sites.bioeng.auckland.ac.nz/medtech/lungs/.

478

Tawhai, M. H., Clark, A. R. & Chase, J. G. The Lung Physiome and virtual patient models: From morphometry to clinical translation. Morphologie (2019). https://doi.org/10.1016/j.morpho.2019.09.003.

479

Chan, H.-F., Collier, G. J., Parra-Robles, J. & Wild, J. M. Finite element simulations of hyperpolarized gas DWI in micro-CT meshes of acinar airways: Validating the cylinder and stretched exponential models of lung microstructural length scales. Magn. Reson. Med. 86, 514–525 (2021).

480

Corley, R. A. et al. Comparative computational modeling of airflows and vapor dosimetry in the respiratory tracts of rat, monkey, and human. Toxicol. Sci. (2012). https://doi.org/10.1093/toxsci/kfs168.

481

Calmet, H. et al. Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation. Comput. Biol. Med. 69, 166–180 (2016).

482

Franiatte, S., Clarke, R. & Ho, H. A computational model for hepatotoxicity by coupling drug transport and acetaminophen metabolism equations. Int. J. Numer. Method. Biomed. Eng. (2019). https://doi.org/10.1002/cnm.3234.

483

Muller, A., Clarke, R. & Ho, H. Fast blood-flow simulation for large arterial trees con- taining thousands of vessels. Comput. Methods Biomech. Biomed. Engin. (2017). https://doi.org/10.1080/10255842.2016.1207170.

484

Ho, H., Yu, H. B., Bartlett, A. & Hunter, P. An in silico pipeline for subject-specific hemodynamics analysis in liver surgery planning. Comput. Methods Biomech. Biomed. Engin. (2020). https://doi.org/10.1080/10255842.2019.1708335.

485

Ho, H., Bartlett, A. & Hunter, P. Virtual liver models in pre-surgical planning, intrasurgical navigation and prognosis analysis. Drug Discovery Today: Disease Models (2016). https://doi.org/10.1016/j.ddmod.2017.09.003.

486

Hoehme, S. et al. Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proc. Natl. Acad. Sci. U. S. A. (2010). https://doi.org/10.1073/pnas.0909374107.

487

Meyer, K. et al. A predictive 3D multi-scale model of biliary fluid dynamics in the liver lobule. Cell Syst. (2017). https://doi.org/10.1016/j.cels.2017.02.008.

488

Brown, S. A. et al. Six-month randomized, multicenter trial of closed-loop control in type 1 diabetes. N. Engl. J. Med. 381, 1707–1717 (2019).

489

Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PloS Biol. (2016). https://doi.org/10.1371/journal.pbio.1002533.

490

Amato, K. R. et al. Convergence of human and Old World monkey gut microbiomes demonstrates the importance of human ecology over phylogeny. Genome Biol. (2019). https://doi.org./10.1186/s13059-019-1807-z.

491

Mao, J. H. et al. Genetic and metabolic links between the murine microbiome and memory. Microbiome (2020). https://doi.org/10.1186/s40168-020-00817-w.

492

Muangkram, Y., Honda, M., Amano, A., Himeno, Y. & Noma, A. Exploring the role of fatigue-related metabolite activity during high-intensity exercise using a simplified whole-body mathematical model. Informatics Med. Unlocked 19, 100355 (2020).

493

Brunk, E. et al. Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat. Biotechnol. 36, 272–281 (2018).

494

Thiele, I. et al. Personalized whole-body models integrate metabolism, physiology, and the gut microbiome. Mol. Syst. Biol. 16, e8982 (2020).

495

Rzechorzek, N. M., et al. A daily temperature rhythm in the human brain predicts survival after brain injury. Brain (2022). https://doi.org/10.1093/brain/awab466.

496

Shapson-Coe, A. et al. A connectomic study of a petascale fragment of human cerebral cortex. bioRxiv (2021). https://doi.org/10.1101/2021.05.29.446289.

497

Abbott, A. How the world’s biggest brain maps could transform neuroscience. Nature 598, 22–25 (2021).

498

Arnulfo, G. et al. Long-range phase synchronization of high-frequency oscillations in human cortex. Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-18975-8.

499

Wagstyl, K. et al. BigBrain 3D atlas of cortical layers: Cortical and laminar thickness gra- dients diverge in sensory and motor cortices. PloS Biol. (2020). https://doi.org/10.1371/journal.pbio.3000678.

500

Giacopelli, G., Migliore, M. & Tegolo, D. Graph-theoretical derivation of brain structural connectivity. Appl. Math. Comput. (2020). https://doi.org/10.1016/j.amc.2020.125150.

501

Wybo, W. A. et al. Data-driven reduction of dendritic morphologies with preserved dendro-somatic responses. Elife (2021). https://doi.org/10.7554/elife.60936.

502

Squair, J. W. et al. Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury. Nature (2021). https://doi.org/10.1038/s41586-020-03180-w.

503

Neurotwin. https://www.neurotwin.eu/.

504

Highfield, R. How a magnet turned off my speech. Daily Telegraph (May 16, 2008). https:// www.telegraph.co.uk/news/science/science-news/3342331/How-a-magnet-turned-off-my-speech.html.

505

Olmi, S., Petkoski, S., Guye, M., Bartolomei, F. & Jirsa, V. Controlling seizure propaga- tion in large-scale brain networks. PloS Comput. Biol. (2019). https://doi.org/10.1371/journal.pcbi.1006805.

506

Симона Олми, электронное письмо Питеру Ковени и Роджеру Хайфилду, 12 апреля 2021 г.

507

Виктор Йирса, электронное письмо Питеру Ковени и Роджеру Хайфилду, 9 октября 2021 г.

508

Aerts, H. et al. Modeling brain dynamics after tumor resection using The Virtual Brain.Neuroimage (2020). https://doi.org/10.1016/j.neuroimage.2020.116738.

509

Falcon, M. I. et al. Functional mechanisms of recovery after chronic stroke: Modeling with The Virtual Brain. eNeuro (2016). https://doi.org/10.1523/ENEURO.0158-15.2016.

510

Akil, H., Martone, M. E. & Van Essen, D. C. Challenges and opportunities in mining neuroscience data. Science (2011). https://doi.org/10.1126/science.1199305.

511

Pashkovski, S. L. et al. Structure and flexibility in cortical representations of odour space. Nature (2020). https://doi.org/10.1038/s41586-020-2451-1.

512

Роджер Пенроуз в беседе с Дэвидом Эйзенбадом, An Evening with Sir Roger Penrose, Royal Society, 8 июня 2022 г.

513

Turing, A. M. On computable numbers, with an application to the Entscheidungsprob- lem. Proc. London Math. Soc. (1937). https://doi.org/10.1112/plms/s2–42.1.230.

514

Church, A. An unsolvable problem of elementary number theory. Am. J. Math. (1936). https://doi.org/10.2307/2371045.

515

Penrose, R. What is reality? New Sci. (2006). https://doi.org/10.1016/S0262-4079(06) 61094-4.

516

По словам Роджера Пенроуза, «есть особенности физических законов <…>, которые выходят за рамки известных нам исчислимых законов, и единственное место для таких законов – это коллапс волновой функции, особенность квантовой механики, которая не объяснена современной теорией».

517

Hameroff, S. & Penrose, R. Consciousness in the universe: A review of the “Orch OR” theory. Phys. Life Rev. 11, 39–78 (2014).

518

Krittian, S.B.S. et al. A finite-element approach to the direct computation of relative cardiovascular pressure from time-resolved MR velocity data. Med. Image Anal. (2012). https://doi.org/10.1016/j.media.2012.04.003.

519

Babbage, C. Passages from the Life of a Philosopher. Cambridge Library Collection— Technology (Cambridge University Press, 2011). https://doi.org/10.1017/CBO9781139 103671.

520

Kendon, V. M., Nemoto, K. & Munro, W. J. Quantum analogue computing. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2010). https://doi.org/10.1098/rsta.2010.0017.

521

Cowan, G.E.R., Melville, R. C. & Tsividis, Y.P.A VLSI analog computer/digital computer accelerator. IEEE J. Solid-State Circuits 41, 42–53 (2006).

522

Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).

523

Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi 10, 509–514 (1968).

524

Эта работа также вызвала огромный интерес, поскольку предполагала, что метаматериалы могут иметь отрицательный показатель преломления, неизвестный в то время в природе, но постулированный десятилетиями ранее российским физиком Виктором Веселаго после экспериментов с уравнениями Максвелла.

525

Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

526

Molnár, B., Molnár, F., Varga, M., Toroczkai, Z. & Ercsey-Ravasz, M. A continuous-time MaxSAT solver with high analog performance. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-07327-2.

527

Alù, A. & Engheta, N. Achieving transparency with plasmonic and metamaterial coat- ings. Phys. Rev. E—Stat. Nonlinear, Soft Matter Phys. (2005). https://doi.org/10.1103/Phys RevE.72.016623.

528

Silva, A. et al. Performing mathematical operations with metamaterials. Science (2014). https://doi.org/10.1126/science.1242818.

529

Camacho, M., Edwards, B. & Engheta, N. A single inverse-designed photonic structure that performs parallel computing. Nat. Commun. 12, 1466 (2021).

530

Estakhri, N. M., Edwards, B. & Engheta, N. Inverse-designed metastructures that solve equations. Science (2019). https://doi.org/10.1126/science.aaw2498.

531

Надер Энгета, электронное письмо Роджеру Хайфилду, 18 марта 2021 г.

532

Stroev, N. & Berloff, N. G. Discrete polynomial optimization with coherent networks of condensates and complex coupling switching. Phys. Rev. Lett. 126, 50504 (2021).

533

Mead, C. Neuromorphic electronic systems. Proc. IEEE (1990). https://doi.org/10.1109/5.58356.

534

Kumar, S., Williams, R. S. & Wang, Z. Third-order nanocircuit elements for neuromor- phic engineering. Nature (2020). https://doi.org/10.1038/s41586-020-2735-5.

535

Стэн Уильямс и Сухас Кумар, интервью с Питером Ковени и Роджером Хайфилдом, 2 октября 2020 г.

536

Chua, L. O. Memristor—the missing circuit element. IEEE Trans. Circuit Theory (1971). https://doi.org/10.1109/TCT.1971.1083337.

537

Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature (2008) https://doi.org/10.1038/nature06932.

538

Joksas, D. et al. Committee machines—a universal method to deal with non-idealities in memristor-based neural networks. Nat. Commun. 11, 4273 (2020).

539

Chua, L., Sbitnev, V. & Kim, H. Hodgkin-Huxley axon is made of memristors. Int. J. Bifurcation and Chaos (2012). https://doi.org/10.1142/S021812741230011X.

540

Леон Чуа, 7-й симпозиум по мемристорам и мемристивам в Катании, Италия, 1 октября 2021 г.

541

Brown, T. D., Kumar, S. & Williams, R. S. Physics-based compact modeling of electro- thermal memristors: Negative differential resistance, local activity, and non-local dynamical bifurcations. Appl. Phys. Rev. 9, 11308 (2022).

542

Furber, S. SpiNNaker: A Spiking Neural Network Architecture (Now Publishers, 2020).

543

Стив Фербер, интервью с Роджером Хайфилдом и Питером Ковени, 30 октября 2021 г.

544

Стив Фербер, электронное письмо Роджеру Хайфилду и Питеру Ковени, 18 ноября 2021 г.

545

Йоханнес Шеммель, интервью с Питером Ковени и Роджером Хайфилдом, 23 ноября 2021 г.

546

Yao, P. et al. Face classification using electronic synapses. Nat. Commun. (2017). https:// doi.org/10.1038/ncomms15199.

547

Pei, J. et al. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature (2019). https://doi.org/10.1038/s41586-019-1424-8.

548

Masanes, L., Galley, T. D. & Müller, M. P. The measurement postulates of quantum mechanics are operationally redundant. Nat. Commun. 10, 1–6 (2019).

549

Rae, A. Quantum Physics: Illusion or Reality? 2nd ed. (Cambridge University Press, 2012).

550

Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. (1982). https:// doi.org/10.1007/BF02650179.

551

Deutsch, D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. London, Ser. A Math. Phys. Sci. (1985). https://doi.org/10.1098/rspa.1985.0070.

552

Shor, P. W. Algorithms for quantum computation: Discrete logarithms and factoring. Proc. 35th Ann. Sym. Found. Comput. Sci., 124–134 (1994). https://doi.org/10.1109/SFCS.1994.365700.

553

Lloyd, S. A potentially realizable quantum computer. Science (1993). https://doi.org/10.1126/science.261.5128.1569.

554

Salart, D., Baas, A., Branciard, C., Gisin, N. & Zbinden, H. Testing the speed of “spooky action at a distance”. Nature (2008). https://doi.org/10.1038/nature07121.

555

Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).

556

Сет Ллойд, интервью с Роджером Хайфилдом, 22 мая 2018 г.

557

Ralli, A., Williams, M. I. & Coveney, P. V. A scalable approach to quantum simulation via projection-based embedding. arXiv (2022). https://doi.org/10.48550/arxiv.2203.01135.

558

Питер Лав, электронное письмо Питеру Ковени и Роджеру Хайфилду, 23 ноября 2021 г.

559

Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature (2019). https://doi.org/10.1038/s41586-019-1666-5.

560

Oak Ridge National Laboratory. Quantum supremacy milestone harnesses ORNL Summit supercomputer. Press release (October 23, 2019). https://www.ornl.gov/news/quantum-supremacy-milestone-harnesses-ornl-summit-supercomputer.

561

Oliver, W. D. Quantum computing takes flight: Expert insight into current research. Nature 574, 487–488 (2019).

562

Pan, F., Chen, K. & Zhang, P. Solving the sampling problem of the Sycamore quantum circuits. https://arxiv.org/abs/2111.03011

563

Zhong, H.-S. et al. Quantum computational advantage using photons. Science (2021). https://doi.org/10.1126/science.abe8770.

564

Чаоян Лу, электронное письмо Роджеру Хайфилду, 28 декабря 2020 г.

565

Zhong, H.-S. et al. Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Letters 127, 180502 (2021).

566

Banchi, L., Quesada, N. & Arrazola, J. M. Training Gaussian boson sampling distribu- tions. Phys. Rev. A 102, 12417 (2020).

567

Banchi, L., Fingerhuth, M., Babej, T., Ing, C. & Arrazola, J. M. Molecular docking with Gaussian boson sampling. Sci. Adv. 6, eaax1950 (2020).

568

Jahangiri, S., Arrazola, J. M., Quesada, N. & Killoran, N. Point processes with Gaussian boson sampling. Phys. Rev. E 101, 022134 (2020).

569

Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

570

Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. arXiv (2014). https://doi.org/10.48550/arxiv.1411.4028.

571

Ralli, A., Love, P., Tranter, A. & Coveney, P. Implementation of measurement reduction for the variational quantum eigensolver. Phys. Rev. Res. 3, 033195 (2021).

572

Гиппократ. Избранные книги / Пер. с греч. В. И. Руднева. 1936.

573

Henshilwood, C. S. et al. An abstract drawing from the 73,000-year-old levels at Blom- bos Cave, South Africa. Nature (2018). https://doi.org/10.1038/s41586-018-0514-3.

574

Hublin, J. J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature (2017). https://doi.org/10.1038/nature22336.

575

Джо Мерчант, интервью с Роджером Хайфилдом, 2 сентября 2020 г.

576

Marchant, J. The Human Cosmos: A Secret History of the Stars (Canongate, 2020).

577

Aubert, M. et al. Pleistocene cave art from Sulawesi, Indonesia. Nature (2014). https:// doi.org/10.1038/nature13422.

578

Conard, N. J. A female figurine from the basal Aurignacian of Hohle Fels Cave in south- western Germany. Nature (2009). https://doi.org/10.1038/nature07995.

579

McCoid, C. H. & McDermott, L. D. Toward decolonizing gender: Female vision in the Upper Paleolithic. Am. Anthropol. (1996). https://doi.org/10.1525/aa.1996.98.2.02a00080.

580

Highfield, R. The Physics of Christmas: From the Aerodynamics of Reindeer to the Thermodynamics of Turkey (Little, Brown, 1998).

581

Longest, P. W. et al. Use of computational fluid dynamics deposition modeling in respiratory drug delivery. Expert Opin. Drug Deliv. 16, 7–26 (2019).

582

Wouters, O. J., McKee, M. & Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. J. Am. Med. Assoc. (2020). https://doi.org/10.1001/jama.2020.1166.

583

Turner, E. H., Matthews, A. M., Linardatos, E., Tell, R. A. & Rosenthal, R. Selective pub- lication of antidepressant trials and its influence on apparent efficacy. N. Engl. J. Med. (2008). https://doi.org/10.1056/nejmsa065779.

584

Jefferson, T. et al. Neuraminidase inhibitors for preventing and treating influenza in adults and children. Cochrane Database Sys. Rev. (2014). https://doi.org/10.1002/14651858.CD008965.pub4.

585

Kam-Hansen, S. et al. Altered placebo and drug labeling changes the outcome of episodic migraine attacks. Sci. Transl. Med. (2014). https://doi.org/10.1126/scitransl med.3006175.

586

Leucht, S., Helfer, B., Gartlehner, G. & Davis, J. M. How effective are common medica- tions?: A perspective based on meta-analyses of major drugs. BMC Med. (2015). https://doi.org/10.1186/s12916-015-0494-1.

587

Питер Хантер, интервью с Роджером Хайфилдом, 23 октября 2020 г.

588

Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: From poly- genic to omnigenic. Cell 169, 1177–1186 (2017).

589

MacKenzie, A. & Kolb, A. The human genome at 20: How biology’s most-hyped break- through led to anticlimax and arrests. Phys.org (2021). https://phys.org/news/2021-02-human-genome-biology-most-hyped-breakthrough.amp.

590

ENCODE Project Consortium. The ENCODE (encyclopedia of DNA elements) Project. Science 306, 636–640 (2004).

591

Hall, W. D., Mathews, R. & Morley, K. I. Being more realistic about the public health impact of genomic medicine. PloS Med. (2010). https://doi.org/10.1371/journal.pmed.1000347.

592

McGuire, A. L. et al. The road ahead in genetics and genomics. Nature Rev. Genetics (2020). https://doi.org/10.1038/s41576-020-0272-6.

593

Bhati, A. P. et al. Pandemic drugs at pandemic speed: Infrastructure for accelerating COVID-19 drug discovery with hybrid machine learning- and physics-based simulations on high-performance computers. Interface Focus 11, 20210018 (2021).

594

Wan, S., Bhati, A. P., Wade, A. D., Alfè, D. & Coveney, P. V. Thermodynamic and structural insights into the repurposing of drugs that bind to SARS-CoV-2 main protease. Mol. Sys. Des. Eng. (2021). https://doi.org/10.33774/chemrxiv-2021-03NRL–V2.

595

Price, N. D. et al. A wellness study of 108 individuals using personal, dense, dynamic data clouds. Nat. Biotechnol. 35, 747–756 (2017).

596

Лерой Худ, интервью с Питером Ковени и Роджером Хайфилдом, 14 августа 2021 г.

597

Earls, J. C. et al. Multi-omic biological age estimation and its correlation with wellness and disease phenotypes: A longitudinal study of 3,558 individuals. J. Gerontol. Ser. A 74, S52–S60 (2019).

598

Худ, интервью Ковени и Хайфилду, 14 августа 2021 г.

599

Niederer, S. A., Sacks, M. S., Girolami, M. & Willcox, K. Scaling digital twins from the artisanal to the industrial. Nat. Comput. Sci. 1, 313–320 (2021).

600

Voigt, I. et al. Digital twins for multiple sclerosis. Front. Immunol. 12, (2021).

601

Royal Society. Data management and use: Governance in the 21st century. Joint report by the British Academy and the Royal Society (June 2017). https://royalsociety.org/topics-policy/projects/data-governance/.

602

Nordling, L. A fairer way forward for AI in health care. Nature 573, S103–S105 (2019).

603

UN OHCHR. Artificial intelligence risks to privacy demand urgent action—Bachelet. Press release (September 15, 2021). https://www.ohchr.org/EN/NewsEvents/Pages/media.aspx?IsMediaPage=true.

604

de Kerckhove, D. The personal digital twin, ethical considerations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 379, 20200367 (2021).

605

Bruynseels, K., de Sio, F. S. & van den Hoven, J. Digital twins in health care: Ethical implications of an emerging engineering paradigm. Front. Genet. (2018). https://doi.org/10.3389/fgene.2018.00031.

606

Филип Лютерт, электронное письмо Питеру Ковени, 16 августа 2021 г.

607

Shirasaki, M., Sugiyama, N. S., Takahashi, R. & Kitaura, F.-S. Constraining primordial non-Gaussianity with postreconstructed galaxy bispectrum in redshift space. Phys. Rev. D 103, 23506 (2021).

608

Coveney, P. & Highfield, R. Frontiers of Complexity: The Search for Order in a Chaotic World (Faber, 1996).

609

Hardy, J., de Pazzis, O. & Pomeau, Y. Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions. Phys. Rev. A 13, 1949–1961 (1976).

610

Wolfram, S. Cellular automaton fluids 1: Basic theory. J. Stat. Phys. 45, 471–526 (1986).

611

Liberati, S. Tests of Lorentz invariance: A 2013 update. Class. Quantum Gravity 30, 133001 (2013).

612

Chou, A. S. et al. First measurements of high frequency cross-spectra from a pair of large Michelson interferometers. Phys. Rev. Lett. 117, 111102 (2016).

613

Wolfram, S. A Project to Find the Fundamental Theory of Physics (Wolfram Media, 2020).

614

Gorard, J. Some relativistic and gravitational properties of the Wolfram model. Complex Syst. 29, 599–654 (2020).

615

Gorard, J., Namuduri, M. & Arsiwalla, X. D. ZX–Calculus and Extended Hypergraph Rewriting Systems I: A Multiway Approach to Categorical Quantum Information Theory. arXiv (2020). https://doi.org/10.48550/arxiv.2103.15820.

616

Джонатан Горард, интервью с Питером Ковени и Роджером Хайфилдом, 1 октября 2021 г.