Примечания
1
Термин, обозначающий компьютерное моделирование (симуляцию) эксперимента, чаще биологического. Фраза была создана по аналогии с фразами in vivo (в живом организме) и in vitro (в пробирке).
2
YouTube. The virtual human project (posted March 12, 2018). https://www.youtube.com/watch?v=1ZrAaDsfBYY.
3
Grieves, M. & Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems (eds. Kahlen, J., Flumerfelt, S. & Alves, A.), 85–113 (Springer, 2017).
4
Shafto, M. et al. DRAFT Modeling, Simulation, Information Technology & Processing Roadmap, Technology Area 11 (NASA, 2010).
5
Negri, E., Fumagalli, L. & Macchi, M. A review of the roles of digital twin in CPS-based production systems. Procedia Manuf. 11, 939–948 (2017).
6
Niederer, S. A., Sacks, M. S., Girolami, M. & Willcox, K. Scaling digital twins from the artisanal to the industrial. Nat. Comput. Sci. 1, 313–320 (2021).
7
El Saddik, A. Digital twins: The convergence of multimedia technologies. IEEE Multimed.(2018). https://doi.org/10.1109/MMUL.2018.023121167.
8
Лерой Худ, интервью с Питером Ковени и Роджером Хайфилдом, 12 августа 2021 г.
9
Тим Палмер, электронное письмо Питеру Ковени, 2 июня 2021 г.
10
Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015).
11
Abbe, C. The needs of meteorology. Science 1(7), 181–182 (1895).
12
Alley, R. B., Emanuel, K. A. & Zhang, F. Advances in weather prediction. Science 363, 342–344 (2019).
13
European Commission. Shaping Europe’s digital future: Destination Earth. https:// digital-strategy.ec.europa.eu/en/policies/destination-earth (accessed May 29, 2022).
14
Mitchell, H. H., Hamilton, T. S., Steggerda, F. R. & Bean, H. W. The chemical composition of the adult human body and its bearing on the biochemistry of growth. J. Biol. Chem. 158, 625–637 (1945).
15
Proctor, J., Hsiang, S., Burney, J., Burke, M. & Schlenker, W. Estimating global agricultural effects of geoengineering using volcanic eruptions. Nature (2018). https://doi.org/10.1038/s41586-018-0417-3.
16
Dallas, V. & Vassilicos, J. C. Rapid growth of cloud droplets by turbulence. Phys. Rev. E— Stat. Nonlinear, Soft Matter Phys. (2011). https://doi.org/10.1103/PhysRevE.84.046315.
17
Morton, O. The Planet Remade: How Geoengineering Could Change the World (Granta, 2015).
18
Auffray, C. & Noble, D. Origins of systems biology in William Harvey’s masterpiece on the movement of the heart and the blood in animals. Int. J. Mol. Sci. (2009). https://doi.org/10.3390/ijms10041658.
19
Noble, D. Claude Bernard, the first systems biologist, and the future of physiology. Exp. Physiol. (2008). https://doi.org/10.1113/expphysiol.2007.038695.
20
Nosil, P. et al. Natural selection and the predictability of evolution in Timema stick insects. Science (2018). https://doi.org/10.1126/science.aap9125.
21
Пол Нерс, интервью с Питером Ковени и Роджером Хайфилдом, 25 сентября 2021 г.
22
Nurse, P. Biology must generate ideas as well as data. Nature 597, 305 (2021).
23
Charlton, W. Greek philosophy and the concept of an academic discipline. Hist. Polit. Thought 6, 47–61 (1985).
24
Coveney, P. & Highfield, R. The Arrow of Time: A Voyage through Science to Solve Time’s Greatest Mystery (W. H. Allen, 1991).
25
Coveney, P. & Highfield, R. Frontiers of Complexity: The Search for Order in a Chaotic World (Faber, 1996).
26
Hunter, P., Robbins, P. & Noble, D. The IUPS human physiome project. Pflugers Archiv Eur. J. Physiol. (2002). https://doi.org/10.1007/s00424-002-0890-1.
27
Hernandez-Boussard, T. et al. Digital twins for predictive oncology will be a paradigm shift for precision cancer care. Nat. Med. 27, 2065–2066 (2021).
28
Hunter, P. et al. A vision and strategy for the virtual physiological human in 2010 and beyond. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2010). https://doi.org/10.1098/rsta.2010.0048.
29
Human Brain Project. The Human Brain Project: A Report to the European Commission. HBP-PS Consortium (2012).
30
Kitano, H. Grand challenges in systems physiology. Front. Physiol. 1, 3 (2010).
31
Хорхе Луис Борхес. Создатель (рассказы, стихотворения, интервью) / Пер. Б. В. Дубина. М.: Азбука-Аттикус, 2022.
32
Borges, J. L. On exactitude in science. Los Anales de Buenos Aires 1, 3 (March 1946).
33
Matzeu, G. et al. Large-scale patterning of reactive surfaces for wearable and environmentally deployable sensors. Adv. Mater. 32, 2001258 (2020).
34
Coveney, P. V, Groen, D. & Hoekstra, A. G. Reliability and reproducibility in computational science: Implementing validation, verification and uncertainty quantification in silico. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 379, 20200409 (2021).
35
Bianconi, E. et al. An estimation of the number of cells in the human body. Ann. Hum. Biol. (2013). https://doi.org/10.3109/03014460.2013.807878.
36
Chellan, P. & Sadler, P. J. The elements of life and medicines. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2015). https://doi.org/10.1098/rsta.2014.0182.
37
Питер Слоот, электронное письмо Питеру Ковени и Роджеру Хайфилду, 4 августа 2021 г.
38
Пол Нерс, интервью с Питером Ковени и Роджером Хайфилдом, 24 сентября 2021 г.
39
Succi, S. Sailing the Ocean of Complexity: Lessons from the Physics-Biology Frontier (Oxford University Press, 2022).
40
Nowak, M. A. & Highfield, R. Supercooperators: Altruism, Evolution, and Why We Need Each Other to Succeed (Canongate, 2011).
41
Toker, D., Sommer, F. T. & D’Esposito, M. A simple method for detecting chaos in nature. Commun. Biol. (2020). https://doi.org10.1038/s42003-019-0715-9.
42
Brenner, S. Life sentences: Detective Rummage investigates. Genome Biol. (2002). https://doi.org/10.1186/gb-2002-3-9-comment1013.
43
Yip, K. M., Fischer, N., Paknia, E., Chari, A. & Stark, H. Breaking the next cryo-EM resolution barrier—atomic resolution determination of proteins! bioRxiv (2020). https://doi.org/10.1101/2020.05.21.106740.
44
Venter, J. C. Life at the Speed of Light: From the Double Helix to the Dawn of Digital Life (Viking, 2013).
45
Bentley, D. R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).
46
Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26(10),1146–1153 (2008).
47
Nurk, S. et al. The complete sequence of a human genome. bioRxiv (2021). https://doi.org/10.1101/2021.05.26.445798.
48
Nurse, P. What Is Life?: Five Great Ideas in Biology. (Scribe, 2020).
49
Venter, C., interview with Peter Coveney and Roger Highfield, December 29, 2021.
50
Levy, S. et al. The diploid genome sequence of an individual human. PLoS Biol. 5, 2113–2144 (2007).
51
Venter, J. C. A Life Decoded: My Genome, My Life (Viking, 2007).
52
Highfield, R. What’s wrong with Craig Venter? Mosaic (2016). https://mosaicscience.com/story/craig-venter-genomics-personalised-medicine/.
53
Perkins, B. A. et al. Precision medicine screening using whole-genome sequencing and advanced imaging to identify disease risk in adults. Proc. Natl. Acad. Sci. U. S. A. 115, 3686–3691 (2018).
54
Крейг Вентер, интервью с Питером Ковени и Роджером Хайфилдом, 29 декабря 2021 г.
55
Gates, A. J., Gysi, D. M., Kellis, M. & Barabási, A.-L. A wealth of discovery built on the Human Genome Project—by the numbers. Nature 590, 212–215 (2021).
56
Munro, S., Freeman, M., Rocha, J., Jayaram, S. A., Stevens, T., et al. Functional unknomics: closing the knowledge gap to accelerate biomedical research. Preprint. https://www.biorxiv.org/content/10.1101/2022.06.28.497983v1.
57
Abascal, F. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature (2020). https://doi.org/10.1038/s41586-020-2493-4.
58
Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757.e24 (2018).
59
Sey, N.Y.A. et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat. Neurosci. (2020). https://doi.org/10.1038/s41593-020-0603-0.
60
Herder, C. & Roden, M. Genetics of type 2 diabetes: Pathophysiologic and clinical relevance. Eur. J. Clin. Invest. 41, 679–692 (2011).
61
Ponomarenko, E. A. et al. The size of the human proteome: The width and depth. Int. J. Analyt. Chem. (2016). https://doi.org/10.1155/2016/7436849.
62
Venter, J. C. Life at the Speed of Light: From the Double Helix to the Dawn of Digital Life (Viking, 2013).
63
Highfield, R. Ultimate molecular machine plays key role in superbug fight. Science Museum Blog (2016). https://blog.sciencemuseum.org.uk/ultimate-molecular-machine-plays-key-role-in-superbug-fight/.
64
Farías-Rico, J. A., Selin, F. R., Myronidi, I., Frühauf, M. & Von Heijne, G. Effects of protein size, thermodynamic stability, and net charge on cotranslational folding on the ribosome. Proc. Natl. Acad. Sci. U. S. A. (2018). https://doi.org/10.1073/pnas.18127 56115.
65
Nilsson, O. B. et al. Cotranslational protein folding inside the ribosome exit tunnel. Cell Rep. (2015). https://doi.org/10.1016/j.celrep.2015.07.065.
66
Highfield, R. The anatomy of a hangover. Daily Telegraph (January 3, 2003). https:// www.telegraph.co.uk/technology/3304259/The-anatomy-of-a-hangover.html.
67
Highfield, R. The true meaning of the morning after. Daily Telegraph (January 3, 2003). https://www.telegraph.co.uk/technology/3304279/The-true-meaning-of-the-morning-after.html.
68
Huckvale, K., Venkatesh, S. & Christensen, H. Toward clinical digital phenotyping: A timely opportunity to consider purpose, quality, and safety. npj Digit. Med. (2019). https://doi.org/10.1038/s41746-019-0166-1.
69
Service, R. DNA could store all of the world’s data in one room. Science (2017). https:// doi.org/10.1126/science.aal0852.
70
Wooley, J. C. & Lin, H. S. Catalyzing Inquiry at the Interface of Computing and Biology (National Academies Press, 2005).
71
Campbell, E. G. et al. Data withholding in academic genetics: Evidence from a national survey. J. Am. Med. Assoc. (2002). https://doi.org/10.1001/jama.287.4.473.
72
Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
73
Royal Society. Data management and use: Governance in the 21st century. Joint report by the British Academy and the Royal Society (June 2017). https://royalsociety.org/topics-policy/projects/data-governance/.
74
Nurse, P. Biology must generate ideas as well as data. Nature 597, 305 (2021).
75
Фрэнсис Бэкон. Новый Органон / Пер. С. Красильщикова. М.: Рипол-Классик, 2021.
76
Bacon, F. The New Organon, or True Directions Concerning the Interpretation of Nature (1620). Trans. Spedding, J., Ellis, R. E. & Heath, D. D. (1863). http://intersci.ss.uci.edu/wiki/eBooks/BOOKS/Bacon/Novum%20Organum%20Bacon.pdf.
77
Steele, J. M. Babylonian observational and predictive astronomy. In Handbook of Archaeoastronomy and Ethnoastronomy (ed. Ruggles, C.), 1855–1862 (Springer, 2015).
78
Coveney, P. V., Dougherty, E. R. & Highfield, R. R. Big data need big theory too. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2016). https://doi.org/10.1098/rsta.2016.0153.
79
Highfield, R. & Carter, P. The Private Lives of Albert Einstein (Faber, 1993).
80
Highfield, R. Heroes of science. Royal Society (2012). https://royalsociety.org/science-events-and-lectures/2012/heroes-of-science/.
81
Newton, I. Philosophiae Naturalis Principia Mathematica (1687). https://doi.org/10.5479/sil.52126.39088015628399.
82
Highfield, R. Interview with Stephen Hawking. Daily Telegraph (October 18, 2001). https:// www.telegraph.co.uk/news/science/science-news/4766816/Interview-with-Stephen-Hawking.html.
83
Thompson, S. P. Calculus Made Easy. 2nd ed. (MacMillan, 1914). https://www.gutenberg.org/ebooks/33283.
84
Zeeman, E. Differential equations for the heartbeat and nerve impulse. In Biological Processes in Living Systems (ed. Waddington, C. H.), 8–67 (Routledge, 2017).
85
de Langhe, B., Puntoni, S. & Larrick, R. Linear thinking in a nonlinear world. Harvard Bus. Rev. 95(3), 130–139 (2017).
86
Cooper, N. G. & Lax, P. From cardinals to chaos: Reflections on the life and legacy of Stanislaw Ulam. Phys. Today (1989). https://doi.org/10.1063/1.2811052.
87
Монстр математики (фр.). – Прим. пер.
88
Lee, W. Y., Dawes, W. N. & Coull, J. D. The required aerodynamic simulation fidelity to usefully support a gas turbine digital twin for manufacturing. J. Glob. Power Propuls. Soc. 5, 15–27 (2021).
89
Sun, S. & Zhang, T. A 6M digital twin for modeling and simulation in subsurface reservoirs. Adv. Geo-Energy Res. 4, 349–351 (2020).
90
Sherwin, S. J., Formaggia, L., Peiró, J. & Franke, V. Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. Int. J. Numer. Methods Fluids 43, 673–700 (2003).
91
Luo, Y. (), Xiao, Q. (), Zhu, Q. () & Pan, G. (). Pulsed-jet propulsion of a squid-inspired swimmer at high Reynolds number. Phys. Fluids 32, 111901 (2020).
92
Scully, T. Neuroscience: The great squid hunt. Nature (2008). https://doi.org/10.1038/454934a.
93
Fasano, C. et al. Neuronal conduction of excitation without action potentials based on ceramide production. PLoS One (2007). https://doi.org/10.1371/journal.pone.0000612.
94
Häusser, M. The Hodgkin-Huxley theory of the action potential. Nat. Neurosci. (2000). https://doi.org/10.1038/81426.
95
Роджер Пенроуз в беседе с Дэвидом Эйзенбадом, «Вечер с сэром Роджером Пенроузом», Королевское общество, 8 июня 2022 г.
96
Barrow, J. D. Pi in the Sky: Counting, Thinking and Being (Clarendon Press, 1992).
97
Turing, A. M. On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. (1937). https://doi.org/10.1112/plms/s2–42.1.230.
98
Church, A. An unsolvable problem of elementary number theory. Am. J. Math. (1936). https://doi.org/10.2307/2371045.
99
Post, E. L. Finite combinatory processes—formulation 1. J. Symb. Log. 1, 103–105 (1936).
100
Pour-El, M. B. & Richards, J. I. Computability in Analysis and Physics: Perspectives in Logic (Cambridge University Press, 2017). https://doi.org/10.1017/9781316717325.
101
Технически их называют не непрерывными, то есть однородными или регулярными, за исключением однократной дифференциации, и они относятся к категории «слабого решения».
102
Pour-El, M. B. & Richards, I. The wave equation with computable initial data such that its unique solution is not computable. Adv. Math. (N. Y.) 39, 215–239 (1981).
103
Penrose, R. Précis of The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics. Behav. Brain Sci. (1990). https://doi.org/10.1017/s0140525x00080675.
104
Роджер Пенроуз. Новый ум короля. М.: Ленанд, 2019.
105
Roli, A., Jaeger, J. & Kauffman, S. A. How organisms come to know the world: Fundamental limits on artificial general intelligence. Front. Ecol. Evol. 9 (2022).
106
Dauben, J. W. Georg Cantor and Pope Leo XIII: Mathematics, theology, and the infinite. J. Hist. Ideas (1977). https://doi.org/10.2307/2708842.
107
Black, D. Beating floating point at its own game: Posit arithmetic. Inside HPC (2017). https://insidehpc.com/2017/08/beating-floating-point-game-posit-arithmetic/.
108
Gustafson, J. The End of Error: Unum Computing (Chapman & Hall, 2015).
109
Lorenz, E. Predictability: Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas? Am. Assoc. Adv. Sci., 139th Meeting (paper presented December 29, 1972).
110
Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. (1963). https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
111
Coveney, P. V. & Wan, S. On the calculation of equilibrium thermodynamic properties from molecular dynamics. Phys. Chem. Chem. Phys. (2016). https://doi.org/10.1039/c6cp02349e.
112
Hardaker, P. Weather in my life—Professor Tim Palmer FRS, president of the RMetS. Weather (2011). https://doi.org/10.1002/wea.814.
113
Boghosian, B. M., Fazendeiro, L. M., Lätt, J., Tang, H. & Coveney, P. V. New variational principles for locating periodic orbits of differential equations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 2211–2218 (2011).
114
Smith, J. H. et al. How neurons exploit fractal geometry to optimize their network connectivity. Sci. Rep. 11, 2332 (2021).
115
Cvitanović, P. Periodic orbits as the skeleton of classical and quantum chaos. Phys. D Nonlinear Phenom. 51, 138–151 (1991).
116
Coveney, P. V. & Wan, S. On the calculation of equilibrium thermodynamic properties from molecular dynamics. Phys. Chem. Chem. Phys. (2016). https://doi.org/10.1039/c6cp02349e.
117
Nee, S. Survival and weak chaos. R. Soc. Open Sci. (2018). https://doi.org/10.1098/ rsos.172181.
118
Boghosian, B. M., Coveney, P. V. & Wang, H. A. New pathology in the simulation of chaotic dynamical systems on digital computers. Adv. Theory Simulations (2019). https://doi.org/10.1002/adts.201900125.
119
Брюс Богосян, интервью с Роджером Хайфилдом, 11 сентября 2020 г.
120
Проблему можно решить, используя стохастическое округление или логарифмические неподвижные точки вместо чисел с плавающей запятой.
121
Sauer, T. D. Shadowing breakdown and large errors in dynamical simulations of physical systems. Phys. Rev. E 65, 36220 (2002).
122
Sauer, T. Computer arithmetic and sensitivity of natural measure. J. Differ. Equations Appl. 11, 669–676 (2005).
123
Pool, R. Is it healthy to be chaotic? Science (1989) https://doi.org/10.1126/science.2916117.
124
May, R. M. Uses and abuses of mathematics in biology. Science (2004). https://doi.org/10.1126/science.1094442.
125
Highfield, R. Ramanujan: Divining the origins of genius. Science Museum Blog (2016). https://blog.sciencemuseum.org.uk/ramanujan-divining-the-origins-of-genius/.
126
Herron, M. D. & Doebeli, M. Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol. (2013). https://doi.org/10.1371/journal.pbio.1001490.
127
Wiser, M. J., Ribeck, N. & Lenski, R. E. Long-term dynamics of adaptation in asexual populations. Science (2013). https://doi.org/10.1126/science.1243357.
128
Łuksza, M. & Lässig, M. A predictive fitness model for influenza. Nature (2014). https:// doi.org/10.1038/nature13087.
129
Nowak, M. A. & Highfield, R. Supercooperators: Altruism, Evolution, and Why We Need Each Other to Succeed (Canongate, 2011).
130
Russell, B., Slater, J. G. & Frohmann, B. Logical and Philosophical Papers, 1909–13, vol. 6 (Routledge, 1992).
131
Weinan, E. The dawning of a new era in applied mathematics. Not. Am. Math. Soc. 68, 565–571 (2021).
132
Feynman, R. P. The Feynman Lectures on Physics (Addison-Wesley, 1963–1965).
133
Marchant, J. The Human Cosmos (Dutton, 2020).
134
Магдалини Анастасиу, интервью с Роджером Хайфилдом, 24 августа 2021 г.
135
Harlow, F. H. & Metropolis, N. Computing & computers: Weapons simulation leads to the computer era. Los Alamos Sci., 132–141 (Winter/spring 1983).
136
Anderson, H. Metropolis, Monte Carlo and the MANIAC. Los Alamos Sci., 96–107 (February 1986).
137
Schweber, S. S. In the Shadow of the Bomb: Oppenheimer, Bethe, and the Moral Responsibility of the Scientist (Princeton University Press, 2013).
138
Rhodes, R. The Making of the Atomic Bomb (Simon & Schuster, 1986).
139
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).
140
Battimelli, G. & Ciccotti, G. Berni Alder and the pioneering times of molecular simulation. Eur. Phys. J. H 43 (2018).
141
Alder, B. J. & Wainwright, T. E. Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209 (1957).
142
SEAC – электронный компьютер первого поколения, построенный в 1950 г. Национальным бюро стандартов США. – Прим. пер.
143
Moore, J. W. A personal view of the early development of computational neuroscience in the USA. Front. Comput. Neurosci. (2010). https://doi.org/10.3389/fncom.2010.00020.
144
Huxley, A. F. Ion movements during nerve activity. Ann. N. Y. Acad. Sci. 81, 221–246 (1959).
145
Chen, Z. & Auffray, C. (eds.). The Selected Papers of Denis Noble CBE FRS: A Journey in Physiology towards Enlightenment (Imperial College Press, 2012).
146
Денис Нобл, электронное письмо Роджеру Хайфилду, 16 января 2021 г.
147
Денис Нобл, интервью с Роджером Хайфилдом, 28 августа 2020 г.
148
Noble, D. A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potentials. J. Physiol. (1962). https://doi.org/10.1113/jphysiol.1962.sp006849.
149
McAllister, R. E., Noble, D. & Tsien, R. W. Reconstruction of the electrical activity of cardiac Purkinje fibres. J. Physiol. (1975). https://doi.org/10.1113/jphysiol.1975.sp011080.
150
DiFrancesco, D. & Noble, D. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos. Trans. R. Soc. B Biol. Sci. (1985). https://doi.org/10.1098/rstb.1985.0001.
151
Beeler, G. W. & Reuter, H. Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol. (1977). https://doi.org/10.1113/jphysiol.1977.sp011853.
152
Noble, D. Successes and failures in modeling heart cell electrophysiology. Heart Rhythm (2011). https://doi.org/10.1016/j.hrthm.2011.06.014.
153
Tomayko, J. Computers in spaceflight: The NASA experience. In Encyclopedia of Computer Science and Technology (eds. Kent, A. & Williams, J. G.), vol. 18 (CRC Press, 1987). https://history.nasa.gov/computers/Ch2-5.html.
154
Hey, T. & Papay, G. The Computing Universe: A Journey through a Revolution (Cambridge University Press, 2014).
155
Kaufmann, W. J. & Smarr, L. L. Supercomputing and the transformation of science. La Météorologie (1995). https://doi.org/10.4267/2042/52011.
156
Murray, C. The Supermen: The Story of Seymour Cray and the Technical Wizards behind the Supercomputer (Wiley, 1997).
157
Moore, G. E. Cramming more components onto integrated circuits. IEEE Solid-State Circuits Soc. Newsl. (2009). Reprinted from Electronics 38 (8): 114ff. (April 19, 1965). https://doi.org/10.1109/n-ssc.2006.4785860.
158
Dennard, R. H. et al. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits (1974). https://doi.org/10.1109/JSSC.1974.1050511.
159
Alowayyed, S., Groen, D., Coveney, P. V. & Hoekstra, A. G. Multiscale computing in the exascale era. J. Comput. Sci. (2017). https://doi.org/10.1016/j.jocs.2017.07.004.
160
Kogge, P. et al. ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems. Def. Adv. Res. Proj. Agency Inf. Process. Tech. Off. (DARPA IPTO), Technical Represent. 15 (2008).
161
Рик Стивенс, интервью с Роджером Хайфилдом, 13 августа 2020 г.
162
Mirhoseini, A. et al. A graph placement methodology for fast chip design. Nature 594, 207–212 (2021).
163
Рик Стивенс, интервью с Роджером Хайфилдом, 28 сентября 2020 г.
164
Lee, C. T. & Amaro, R. E. Exascale computing: A new dawn for computational biology. Comput. Sci. Eng. (2018). https://doi.org/10.1109/MCSE.2018.05329812.
165
Nievergelt, J. Parallel methods for integrating ordinary differential equations. Commun. ACM 7, 731–733 (1964).
166
Lions, J.-L., Maday, Y. & Turinici, G. Résolution d’EDP par un schéma en temps «pararéel». Comptes Rendus l’Académie des Sci. – Ser. I—Math. 332, 661–668 (2001).
167
Eames, I. & Flor, J. B. New developments in understanding interfacial processes in turbulent flows. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 702–705 (2011).
168
Boghosian, B. M. et al. Unstable periodic orbits in the Lorenz attractor. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 2345–2353 (2011).
169
Jia, W. et al. Pushing the limit of molecular dynamics with ab initio accuracy to 100 million atoms with machine learning. Proc. Int. Conf. High Performance Comput., Net-working, Storage and Analysis (IEEE, 2020).
170
Zimmerman, M. I. et al. Citizen scientists create an exascale computer to combat COVID-19. bioRxiv (2020). https://doi.org/10.1101/2020.06.27.175430.
171
Mann, A. Nascent exascale supercomputers offer promise, present challenges. Proc. Natl. Acad. Sci. U. S. A. (2020). https://doi.org/10.1073/pnas.2015968117.
172
Oak Ridge National Laboratory. Frontier supercomputer debuts as world’s fastest, breaking exascale barrier. Press release (May 30, 2022). https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-barrier.
173
Golaz, J. C. et al. The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. J. Adv. Model. Earth Syst. (2019). https://doi.org/10.1029/2018MS001603.
174
Wagman, B. M., Lundquist, K. A., Tang, Q., Glascoe, L. G. & Bader, D. C. Examining the climate effects of a regional nuclear weapons exchange using a multiscale atmospheric modeling approach. J. Geophys. Res. Atmos. (2020). https://doi.org/10.1029/2020JD033056.
175
Reed, P. M. & Hadka, D. Evolving many-objective water management to exploit exascale computing. Water Resour. Res. (2014). https://doi.org/10.1002/2014WR015976.
176
Degrave, J. et al. Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602, 414–419 (2022).
177
Kates-Harbeck, J., Svyatkovskiy, A. & Tang, W. Predicting disruptive instabilities in controlled fusion plasmas through deep learning. Nature (2019). https://doi.org/10.1038/s41586-019-1116-4.
178
Coveney, P. V, Groen, D. & Hoekstra, A. G. Reliability and reproducibility in computational science: Implementing validation, verification and uncertainty quantification in silico. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 379, 20200409 (2021).
179
Coveney, P. V & Highfield, R. R. When we can trust computers (and when we can’t). Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 379, 20200067 (2021).
180
Johnson, N. F. et al. The online competition between pro- and anti-vaccination views. Nature 582, 230–233 (2020).
181
Perkel, J. M. Challenge to scientists: Does your ten-year-old code still run? Nature 584, 656–658 (2020).
182
Карен Уиллкокс. Прогнозирующие цифровые двойники: от физического моделирования к научному машинному обучению. CIS Digital Twin Days, 15 ноября 2021 | Лозанна, Швейцария.
183
VECMA. https://www.vecma.eu/.
184
VECMA Toolkit. https://www.vecma-toolkit.eu/.
185
Highfield, R. R. Coronavirus: Virtual pandemics. Science Museum Group Blog (2020). https://www.sciencemuseumgroup.org.uk/blog/coronavirus-virtual-pandemics/.
186
Edeling, W. et al. The impact of uncertainty on predictions of the CovidSim epidemiological code. Nat. Comput. Sci. 1, 128–135 (2021).
187
Тим Палмер. The Primacy of Doubt («Первостепенность сомнения») (Oxford University Press, 2022).
188
Jordan, J. et al. Extremely scalable spiking neuronal network simulation code: From laptops to exascale computers. Front. Neuroinform. (2018). https://doi.org/10.3389/fninf.2018.00002.
189
Hernandez-Boussard, T. et al. Digital twins for predictive oncology will be a paradigm shift for precision cancer care. Nat. Med. 27, 2065–2066 (2021).
190
Bhattacharya, T. et al. AI meets exascale computing: Advancing cancer research with large-scale high performance computing. Front. Oncol. 9 (2019).
191
Приложение А к переводу книги Луиджи Федерико Менебреа «Очерк аналитической машины, изобретенной Чарльзом Бэббиджем» (Notions sur la machine analytique de M. Charles Babbage). Scientific Memoirs: the Transactions of Foreign Academies of Science and Learned Societies, and from Foreign Journals (ed. Taylor, R.), vol. 3, 696 (Richard & John E. Taylor, 1843).
192
IBM. What Will We Make of This Moment? Annual report (2013). https://www.ibm.com/annualreport/2013/bin/assets/2013_ibm_annual.pdf.
193
IBM. 10 key marketing trends for 2017. IBM.com (December 2016). https://app.box.com/s/ez6qv90°6o2txk1fq69spc03b2l3iehd.
194
Первые золотоискатели Калифорнийской золотой лихорадки 1848–1855 гг. – Прим. пер.
195
Anderson, C. The end of theory: The data deluge makes the scientific method obsolete. Wired Mag. (2008). https://doi.org/10.1016/j.ecolmodel.2009.09.008.
196
Samuel, A. L. Some studies in machine learning. IBM J. Res. Dev. (1959).
197
McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. (1943). https://doi.org/10.1007/BF02478259.
198
Hutson, M. Robo-writers: The rise and risks of language-generating AI. Nature 591, 22–25 (2021).
199
Wurman, P. R. et al. Outracing champion Gran Turismo drivers with deep reinforcement learning. Nature 602, 223–228 (2022).
200
Heider, F. & Simmel, M. An experimental study of apparent behavior. Am. J. Psychol. 57, 243–259 (1944).
201
Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science (2018) https://doi.org/10.1126/science.aar6404.
202
Silver, D. et al. Mastering the game of Go without human knowledge. Nature (2017). https://doi.org/10.1038/nature24270.
203
Goodfellow, I. J. et al. Generative adversarial nets. Adv. Neural Inf. Process. Sys. (2014). https:// proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.
204
Zhang, H. et al. StackGAN++: Realistic image synthesis with stacked generative adversarial networks. IEEE Trans. Pattern Anal. Mach. Intell. (2019). https://doi.org/10.1109/TPAMI.2018.2856256.
205
Davies, A. et al. Advancing mathematics by guiding human intuition with AI. Nature 600, 70–74 (2021); Fawzi, A., Balog, M., Huang, A. et al. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature 610, 47–53 (2022). https://doi.org/10.1038/s41586-022-05172-4.
206
Weinan E. The dawning of a new era in applied mathematics. Notices Am. Math. Soc., 68(4), 565–571 (2021).
207
Cheng, B., Engel, E. A., Behler, J., Dellago, C. & Ceriotti, M. Ab initio thermodynamics of liquid and solid water. Proc. Natl. Acad. Sci. 116, 1110–1115 (2019).
208
Lehman, C. D. et al. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern. Med. (2015). https://doi.org/10.1001/jamainternmed.2015.5231.
209
McKinney, S. M. et al. International evaluation of an AI system for breast cancer screening. Nature (2020). https://doi.org/10.1038/s41586-019-1799-6.
210
Lu, M. Y. et al. AI-based pathology predicts origins for cancers of unknown primary. Nature 594, 106–110 (2021).
211
Roberts, M. et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat. Mach. Intell. 3, 199–217 (2021).
212
Mei, X. et al. Artificial intelligence—enabled rapid diagnosis of patients with COVID-19. Nat. Med. 26, 1224–1228 (2020).
213
Ng, A. X-rays: The AI hype. IEEE Spectrum (2021). https://spectrum.ieee.org/andrew-ng-xrays-the-ai-hype.
214
Müller, U., Ivlev, S., Schulz, S. & Wölper, C. Automated crystal structure determination has its pitfalls: Correction to the crystal structures of iodine azide. Angew. Chemie Int. Ed. (2021). https://doi.org/10.1002/anie.202105666.
215
Джон Джампер, интервью с Роджером Хайфилдом, 9 декабря 2020 г.
216
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature (2021). https://doi.org/10.1038/S41586-021-03819-2.
217
Callaway, E. ‘The entire protein universe’: AI predicts shape of nearly every known protein. Nature 608, 15–16 (2022).
218
Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science (2021) https://doi.org/10.1126/science.abj8754.
219
Workman, P. The drug discoverer—reflecting on DeepMind’s AlphaFold artificial intelligence success what’s the real significance for protein folding research and drug discovery? Institute of Cancer Research, London (2021). https://www.icr.ac.uk/blogs/ the-drug-discoverer/page-details/reflecting-on-deepmind-s-alphafold-artificial-intel-ligence-success-what-s-the-real-significance-for-protein-folding-research-and-drug-discovery.
220
Пол Уоркман, электронное письмо Роджеру Хайфилду, 14 марта 2022 г.
221
Szegedy, C. et al. Intriguing properties of neural networks. 2nd Int. Conf. Learning Representations—Conf. Track Proc. (ICLR, 2014).
222
YouTube. A DARPA perspective on artificial intelligence (posted February 15, 2017). https://www.youtube.com/watch?v=-O01G3tSYpU.
223
Eykholt, K. et al. Robust physical-world attacks on deep learning visual classification. Proc. IEEE Comput. Soc. Conf.Comput. Vision and Pattern Recognition (2018). https://doi.org/10.1109/CVPR.2018.00175.
224
Highfield, R. Bill Gates and will.i.am argue for progress through investment in science. Science Museum Blog (2016). https://blog.sciencemuseum.org.uk/bill-gates-and-will-i-am-argue-for-progress-through-investment-in-science/.
225
Hawkins, D. M. The problem of overfitting. J. Chem. Inf. Comput. Sci. (2004). https://doi.org/10.1021/ci0342472.
226
Coveney, P. V. & Highfield, R. R. From digital hype to analogue reality: Universal simulation beyond the quantum and exascale eras. J. Comput. Sci. (2020). https://doi.org/10.1016/j.jocs.2020.101093.
227
Pathak, J., Lu, Z., Hunt, B. R., Girvan, M. & Ott, E. Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data. Chaos (2017). https://doi.org/10.1063/1.5010300.
228
Pathak, J., Hunt, B., Girvan, M., Lu, Z. & Ott, E. Model-free prediction of large spatio-temporally chaotic systems from data: A reservoir computing approach. Phys. Rev. Lett. (2018). https://doi.org/10.1103/PhysRevLett.120.024102.
229
Federrath, C., Klessen, R. S., Iapichino, L. & Beattie, J. R. The sonic scale of interstellar turbulence. Nat. Astron. (2021). https://doi.org/10.1038/s41550-020-01282-z.
230
Wagner, G. & Weitzman, M. Climate Shock (Princeton University Press, 2016).
231
Taleb, N. N. The black swan: Why don’t we learn that we don’t learn? Paper presented at the US Department of Defense Highland Forum, Las Vegas (2004).
232
Succi, S. & Coveney, P. V. Big data: The end of the scientific method? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2019). https://doi.org/10.1098/rsta.2018.0145.
233
Wan, S., Sinclair, R. C. & Coveney, P. V. Uncertainty quantification in classical molecular dynamics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 379, 20200082 (2021).
234
Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and scalable predictive uncertainty estimation using deep ensembles. arXiv 1612.01474 (2016).
235
Hinton, G. Boltzmann machines. Encyclopedia of Machine Learning and Data Mining (2017). https://doi.org/10.1007/978-1-4899-7687-1_31.
236
García-Martín, E., Rodrigues, C. F., Riley, G. & Grahn, H. Estimation of energy consumption in machine learning. J. Parallel Distrib. Comput. 134, 75–88 (2019).
237
Thompson, N. C., Greenewald, K. & Lee, K. Deep learning’s diminishing returns. IEEE Spectrum (2021). https://spectrum.ieee.org/deep-learning-computational-cost.
238
Wright, L. G. et al. Deep physical neural networks trained with backpropagation. Nature 601, 549–555 (2022).
239
Succi, S. & Coveney, P. V. Big data: The end of the scientific method? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2019). https://doi.org/10.1098/rsta.2018.0145.
240
Calude, C. S. & Longo, G. The deluge of spurious correlations in big data. Found. Sci. (2017). https://doi.org/10.1007/s10699-016-9489-4.
241
Zernicka-Goetz, M. & Highfield, R. The Dance of Life (W. H. Allen, 2020).
242
Choudhary, A., Fox, G. & Hey, T. (eds.). AI for Science (World Scientific, in press 2022).
243
Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).
244
Erge, O. & van Oort, E. Combining physics-based and data-driven modeling in well construction: Hybrid fluid dynamics modeling. J. Nat. Gas Sci. Eng. 97, 104348 (2022).
245
Davis, J. J. et al. Antimicrobial resistance prediction in PATRIC and RAST. Sci. Rep. 6, 27930 (2016).
246
McSkimming, D. I., Rasheed, K. & Kannan, N. Classifying kinase conformations using a machine learning approach. BMC Bioinformatics 18, 86 (2017).
247
Rufa, D. A. et al. Towards chemical accuracy for alchemical free energy calculations with hybrid physics-based machine learning/molecular mechanics potentials. bioRxiv (2020). https://doi.org/10.1101/2020.07.29.227959.
248
Эрик Штальберг, интервью с Питером Ковени и Роджером Хайфилдом, 14 января 2022 г.
249
Bhati, A. P. et al. Pandemic drugs at pandemic speed: Infrastructure for accelerating COVID-19 drug discovery with hybrid machine learning and physics-based simulations on high-performance computers. Interface Focus 11, 20210018 (2021).
250
Wan, S., Bhati, A. P., Wade, A. D., Alfè, D. & Coveney, P. V. Thermodynamic and structural insights into the repurposing of drugs that bind to SARS-CoV-2 main protease. Mol. Syst. Des. Eng. (2022). https://doi.org/10.1039/D1ME00124H.
251
Clyde, A. et al. High-throughput virtual screening and validation of a SARS-CoV-2 main protease noncovalent inhibitor. J. Chem. Inf. Modeling 62 (1), 116–128 (2022).
252
Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).
253
Kharazmi, E. et al. Identifiability and predictability of integer- and fractional-order epidemiological models using physics-informed neural networks. Nat. Comput. Sci. 1, 744–753 (2021).
254
Alber, M., et al. Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. Npj Digit. Med. 2, 115 (2019).
255
Einstein, A. The Ultimate Quotable Einstein (Princeton University Press, 2016).
256
Лат. «год чудес» – латинское выражение, применяемое к нескольким календарным годам, отмеченным необычными важными и позитивными событиями. – Прим. пер.
257
Highfield, R. & Carter, P. The Private Lives of Albert Einstein (Faber, 1993).
258
Wheeler, J. A. A Journey into Gravity and Spacetime (Scientific American Library/W. H. Freeman, 1990).
259
Clarke, B. Normal bone anatomy and physiology. Clin. J. Amer. Soc. Nephrol. (2008). https://doi.org/10.2215/CJN.04151206.
260
Brooks, S. V. Current topics for teaching skeletal muscle physiology. Amer. J. Physiol. – Adv. Physiol. Edu. (2003). https://doi.org/10.1152/advan.2003.27.4.171.
261
Chen, Z. & Auffray, C. (eds.). The Selected Papers of Denis Noble CBE FRS: A Journey in Physiology towards Enlightenment (Imperial College Press, 2012).
262
Wei, F. et al. Stress fiber anisotropy contributes to force-mode dependent chromatin stretching and gene upregulation in living cells. Nat. Commun. 11, 4902 (2020).
263
Noble, D. The Music of Life: Biology beyond the Genome (Oxford University Press, 2006).
264
Noble, D. Claude Bernard, the first systems biologist, and the future of physiology. Exp. Physiol. (2008). https://doi.org/10.1113/expphysiol.2007.038695.
265
Novikoff, A. B. The concept of integrative levels and biology. Science (1945). https://doi.org/10.1126/science.101.2618.209.
266
Srinivasan, B. A guide to the Michaelis-Menten equation: Steady state and beyond. FEBS J. (2021). https://doi.org/10.1111/febs.16124.
267
Anderson, H. Metropolis, Monte Carlo and the MANIAC. Los Alamos Sci. 96–107 (1986). https://permalink.lanl.gov/object/tr?what=info: lanl-repo/lareport/LA-UR-86-2600-05.
268
«Закон» на самом деле является аппроксимацией, поскольку надежно применим только к большим наборам атомов и молекул, когда колебания локальных концентраций можно игнорировать.
269
Clark, A. J. Post on DC’s Improbable Science website (2008). http://www.dcscience.net/tag/ajclark/.
270
Clark, A. J. The reaction between acetyl choline and muscle cells. J. Physiol. 61, 530–546 (1926).
271
Dance, A. Beyond coronavirus: The virus discoveries transforming biology. Nature 595, 22–25 (2021).
272
Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature (2020). https://doi.org/10.1038/s41586-020-2562-8.
273
Nakane, T. et al. Single-particle cryo-EM at atomic resolution. Nature 587, 152–156 (2020).
274
Singer, A. & Sigworth, F. J. Computational methods for single-particle cryo-EM. Ann. Rev.Biomed. Data Sci. 3(1), 163–190 (2020).
275
Sharp, P. M. & Hahn, B. H. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. (2011). https://doi.org/10.1101/cshperspect.a006841.
276
Korber, B. et al. Timing the ancestor of the HIV-1 pandemic strains. Science (2000). https://doi.org/10.1126/science.288.5472.1789.
277
Karplus, M. & McCammon, J. A. Molecular dynamics simulations of biomolecules. Nature Structural Biology (2002). https://doi.org/10.1038/nsb0902–646.
278
Stein, M., Gabdoulline, R. R. & Wade, R. C. Bridging from molecular simulation to biochemical networks. Curr. Opinion in Structural Biol. (2007). https://doi.org/10.1016/j.sbi.2007.03.014.
279
Smock, R. G. & Gierasch, L. M. Sending signals dynamically. Science (2009). https://doi.org/10.1126/science.1169377.
280
Shaw, D. E. et al. Anton 2: Raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer. SC ’14: Proc. Int. Conf. High Performance Comput., Networking, Storage and Analysis, 41–53 (2014). https://doi.org/10.1109/SC.2014.9.
281
Di Natale, F. et al. A massively parallel infrastructure for adaptive multiscale simulations: Modeling RAS initiation pathway for cancer. Proc. Int. Conf. High Performance Comput., Networking, Storage and Analysis (ACM, 2019). https://doi.org/10.1145/3295500.3356197.
282
Könnyu, B. et al. Gag-Pol processing during HIV-1 virion maturation: A systems biology approach. PLoS Comput. Biol. (2013). https://doi.org/10.1371/journal.pcbi.1003103.
283
Reddy, B. & Yin, J. Quantitative intracellular kinetics of HIV type 1. AIDS Res. Hum. Retroviruses (1999). https://doi.org/10.1089/088922299311457.
284
Charlotte Eccleston, R., Wan, S., Dalchau, N. & Coveney, P. V. The role of multiscale protein dynamics in antigen presentation and T lymphocyte recognition. Front. Immunol. (2017). https://doi.org/10.3389/fimmu.2017.00797.
285
Kim, H. & Yin, J. Effects of RNA splicing and post-transcriptional regulation on HIV-1 growth: A quantitative and integrated perspective. IEEE Proc. Sys. Biol. (2005). https://doi.org/10.1049/ip-syb:20050004.
286
Wang, Y. & Lai, L. H. Modeling the intracellular dynamics for Vif-APO mediated HIV-1 virus infection. Chinese Sci. Bull. (2010). https://doi.org/10.1007/s11434-010-3103-x.
287
Dalchau, N. et al. A peptide filtering relation quantifies MHC class I peptide optimization. PLoS Comput. Biol. (2011). https://doi.org/10.1371/journal.pcbi.1002144.
288
Нил Далчау, электронное письмо Питеру Ковени, 7 июля 2021 г.
289
Calis, J.J.A. et al. Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Comput. Biol. (2013). https://doi.org/10.1371/journal.pcbi.1003266.
290
Lever, M. et al. Architecture of a minimal signaling pathway explains the T-cell response to a 1 million-fold variation in antigen affinity and dose. Proc. Natl. Acad. Sci. U. S. A. (2016). https://doi.org/10.1073/pnas.1608820113.
291
Eccleston, R. C., Coveney, P. V. & Dalchau, N. Host genotype and time dependent antigen presentation of viral peptides: Predictions from theory. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-14415-8.
292
Boulanger, D.S.M. et al. A mechanistic model for predicting cell surface presentation of competing peptides by MHC class I molecules. Front. Immunol. 9, 1538 (2018).
293
Wan, S., Flower, D. R. & Coveney, P. V. Toward an atomistic understanding of the immune synapse: Large-scale molecular dynamics simulation of a membrane-embedded TCR-pMHC–CD4 complex. Mol. Immunol. 45, 1221–1230 (2008).
294
Eccleston, R. C., Wan, S., Dalchau, N. & Coveney, P. V. The role of multiscale protein dynamics in antigen presentation and T lymphocyte recognition. Front. Immunol. 8, 797 (2017).
295
Lever, M., Maini, P. K., van der Merwe, P. A. & Dushek, O. Phenotypic models of T cell activation. Nat. Rev. Immunol. 14, 619–629 (2014).
296
Lever, M. et al. Architecture of a minimal signaling pathway explains the T-cell response to a 1 million-fold variation in antigen affinity and dose. Proc. Natl. Acad. Sci. U. S. A. (2016). https://doi.org/10.1073/pnas.1608820113.
297
Омер Душек, интервью с Роджером Хайфилдом, 27 июля 2021 г.
298
Омер Душек, электронное письмо Роджеру Хайфилду, 5 сентября 2021 г.
299
Pettmann, J. et al. The discriminatory power of the T cell receptor. Elife 10, e67092 (2021).
300
Омер Душек, интервью с Роджером Хайфилдом, 27 июля 2021 г.
301
Coulson, C. A. Samuel Francis Boys, 1911–1972. Biogr. Mem. Fellows R. Soc. 19, 95–115 (1973).
302
Bullard, E. Computers and Their Role in the Physical Sciences (Gordon and Breach, 1970).
303
Christov, C. Z. et al. Conformational effects on the pro-S hydrogen abstraction reaction in cyclooxygenase-1: An integrated QM/MM and MD study. Biophys. J. 104, L5–L7 (2013).
304
Bhati, A. P. & Coveney, P. V. Large scale study of ligand-protein relative binding free energy calculations: Actionable predictions from statistically robust protocols. Chem-Rxiv (2021). https://doi.org/10.26434/chemrxiv-2021-zdzng.
305
DiMasi, J. A., Grabowski, H. G. & Hansen, R. W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ. (2016). https://doi.org/10.1016/j.jhealeco.2016.01.012.
306
Turner, E. H., Matthews, A. M., Linardatos, E., Tell, R. A. & Rosenthal, R. Selective publication of antidepressant trials and its influence on apparent efficacy. N. Engl. J. Med. (2008). https://doi.org/10.1056/NEJMsa065779.
307
Jefferson, T. et al. Neuraminidase inhibitors for preventing and treating influenza in adults and children. Cochrane Database Sys. Rev. (2014). https://doi.org/10.1002/14651858.CD008965.pub4.
308
Leucht, S., Helfer, B., Gartlehner, G. & Davis, J. M. How effective are common medications?: A perspective based on meta-analyses of major drugs. BMC Med. (2015). https://doi.org/10.1186/s12916-015-0494-1.
309
Bohacek, R. S., McMartin, C. & Guida, W. C. The art and practice of structure-based drug design: A molecular modeling perspective. Med. Res. Rev. 16, 3–50 (1996).
310
Wright, D. W., Hall, B. A., Kenway, O. A., Jha, S. & Coveney, P. V. Computing clinically relevant binding free energies of HIV-1 protease inhibitors. J. Chem. Theory Comput. (2014). https://doi.org/10.1021/ct4007037.
311
Vassaux, M., Wan, S., Edeling, W. & Coveney, P. V. Ensembles are required to handle aleatoric and parametric uncertainty in molecular dynamics simulation. J. Chem. Theory Comput. (2021). https://doi.org/10.1021/acs.jctc.1c00526.
312
Wan, S. et al. Rapid and reliable binding affinity prediction of bromodomain inhibitors: A computational study. J. Chem. Theory Comput. (2017). https://doi.org/10.1021/acs.jctc.6b00794.
313
Wan, S., Bhati, A. P., Zasada, S. J. & Coveney, P. V. Rapid, accurate, precise and reproducible ligand—protein binding free energy prediction. Interface Focus 10, 20200007 (2020).
314
Wright, D. W., Hall, B. A., Kenway, O. A., Jha, S. & Coveney, P. V. Computing clinically relevant binding free energies of HIV-1 protease inhibitors. J. Chem. Theory Comput. (2014). https://doi.org/10.1021/ct4007037.
315
Sloot, P.M.A. et al. HIV decision support: From molecule to man. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 2691–2703 (2009).
316
Fowler, P. W. et al. Robust prediction of resistance to trimethoprim in Staphylococcus aureus. Cell Chem. Biol. 25, 339–349 (2018).
317
Fowler, P. W. How quickly can we predict trimethoprim resistance using alchemical free energy methods? Interface Focus 10, 20190141 (2020).
318
Global Pathogen Analysis System. https://gpas.cloud/.
319
Zernicka-Goetz, M. & Highfield, R. The Dance of Life (W. H. Allen, 2020).
320
Nowak, M. A. & Highfield, R. Supercooperators: Altruism, Evolution, and Why We Need Each Other to Succeed (Canongate, 2011).
321
Мафусаил – бутылка шампанского объемом 6 литров. – Прим. пер.
322
Bhati, A. P., Wan, S. & Coveney, P. V. Ensemble-based replica exchange alchemical free energy methods: The effect of protein mutations on inhibitor binding. J. Chem. Theory Comput. (2019). https://doi.org/10.1021/acs.jctc.8b01118.
323
Wan, S. et al. The effect of protein mutations on drug binding suggests ensuing personalised drug selection. Sci. Rep. 11, 13452 (2021).
324
Sadiq, S. K. et al. Patient-specific simulation as a basis for clinical decision-making. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2008). https://doi.org/10.1098/rsta.2008.0100.
325
Бланка Родригес, электронное письмо Роджеру Хайфилду, 27 января 2021 г.
326
Passini, E. et al. Human in silico drug trials demonstrate higher accuracy than animal models in predicting clinical pro-arrhythmic cardiotoxicity. Front. Physiol. (2017). https://doi.org/10.3389/fphys.2017.00668.
327
Horby, P. et al. Effect of hydroxychloroquine in hospitalized patients with COVID-19: Preliminary results from a multi-centre, randomized, controlled trial. medRxiv (2020). https://doi.org/10.1101/2020.07.15.20151852.
328
Aguado-Sierra, J. et al. In-silico clinical trial using high performance computational modeling of a virtual human cardiac population to assess drug-induced arrhythmic risk. medRxiv (2021). https://doi.org/10.1101/2021.04.21.21255870.
329
Коллин Э. Клэнси, электронное письмо Роджеру Хайфилду, 19 января 2022 г.
330
Yang, P.-C. et al. A computational pipeline to predict cardiotoxicity. Circ. Res. (2020). https://doi.org/10.1161/circresaha.119.316404.
331
Харди Г. Г. Апология математика / Пер. Ю. Каллистратовой. М.: АСТ, 2022.
332
Hardy, G. H. & Snow, C. P. A Mathematician’s Apology (Cambridge University Press, 2012).
333
Leduc, S. The mechanism of life. Arch. Roentgen Ray (1911). https://doi.org/10.1259/arr.1911.0008.
334
Thompson, D. W. On Growth and Form (Cambridge University Press, 1992).
335
Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. B Biol. Sci. (1952). https://doi.org/10.1098/rstb.1952.0012.
336
Murray, J. D. Mathematical Biology: I. An Introduction, vol. 17 (Springer, 2002).
337
Highfield, R. & Rooney, D. The spirit of Alan Turing. Science Museum Blog (2012). https:// blog.sciencemuseum.org.uk/the-spirit-of-alan-turing/.
338
Castets, V., Dulos, E., Boissonade, J. & De Kepper, P. Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953 (1990).
339
Liu, R. T., Liaw, S. S. & Maini, P. K. Two-stage Turing model for generating pigment patterns on the leopard and the jaguar. Phys. Rev. E—Stat. Nonlinear, Soft Matter Phys. (2006). https://doi.org/10.1103/PhysRevE.74.011914.
340
Hamada, H. In search of Turing in vivo: Understanding nodal and lefty behavior. Developmental Cell (2012). https://doi.org/10.1016/j.devcel.2012.05.003.
341
Sick, S., Reinker, S., Timmer, J. & Schlake, T. WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science (2006). https://doi.org/10.1126/science.1130088.
342
Watson, J. D. & Crick, F.H.C. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).
343
Babu, K. & Koushika, S. P. Sydney Brenner (1927–2019). Curr. Sci. 116, 2106–2109 (2019).
344
Crick, F.H.C. Project K: “The complete solution of E. coli.” Perspect. Biol. Med. 17, 67–70 (1973).
345
Morowitz, H. J. The completeness of molecular biology. Isr. J. Med. Sci. 20, 750–753 (1984).
346
Domach, M. M. & Shuler, M. L. A finite representation model for an asynchronous culture of E. coli. Biotechnol. Bioeng. 26, 877–884 (1984).
347
16 Shimobayashi, S. F., Ronceray, P., Sanders, D. W., Haataja, M. P. & Brangwynne, C. P. Nucleation landscape of biomolecular condensates. Nature (2021). https://doi.org/10.1038/s41586-021-03905-5.
348
Venter, J. C. A Life Decoded: My Genome, My Life (Viking, 2007).
349
Tomita, M. et al. E-CELL: Software environment for whole-cell simulation. Bioinformatics (1999). https://doi.org/10.1093/bioinformatics/15.1.72.
350
Коичи Такахаси, электронное письмо Питеру Ковени и Роджеру Хайфилду, 13 октября 2021 г.
351
Fraser, C. M. et al. The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403 (1995).
352
Karr, J. R. et al. A whole-cell computational model predicts phenotype from genotype. Cell (2012). https://doi.org/10.1016/j.cell.2012.05.044.
353
Маркус Коверт, интервью с Питером Ковени и Роджером Хайфилдом, 6 августа 2021 г.
354
Glass, J. I. et al. Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci. U. S. A. (2006). https://doi.org/10.1073/pnas.0510013103.
355
Sanghvi, J. C. et al. Accelerated discovery via a whole-cell model. Nat. Methods 10, 1192–1195 (2013).
356
Маркус Коверт, электронное письмо Питеру Ковени и Роджеру Хайфилду, 14 сентября 2021 г.
357
Hutchison, C. A. et al. Design and synthesis of a minimal bacterial genome. Science (2016). https://doi.org/10.1126/science.aad6253.
358
Highfield, R. J. Craig Venter sequenced the human genome. Now he wants to convert DNA into a digital signal. Wired UK (2013). https://www.wired.co.uk/article/j-craig-venter-interview.
359
Крейг Вентер, интервью с Питером Ковени и Роджером Хайфилдом, 29 декабря 2021 г.
360
Thornburg, Z. R. et al. Fundamental behaviors emerge from simulations of a living minimal cell. Cell 185, 345–360 (2022).
361
Маркус Коверт, электронное письмо Питеру Ковени и Роджеру Хайфилду, 13 сентября 2021 г.
362
Macklin, D. N. et al. Simultaneous cross-evaluation of heterogeneous E. coli datasets via mechanistic simulation. Science (2020). https://doi.org/10.1126/science.aav3751.
363
Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).
364
Johnson, G. T. et al. CellPACK: A virtual mesoscope to model and visualize structural systems biology. Nat. Methods 12, 85–91 (2015).
365
Мартина Маритан, Дэвид Гудселл и Людовик Отин, интервью с Роджером Хайфилдом, 20 мая 2021 г.
366
Там же.
367
Wodke, J.A.H. et al. MyMpn: A database for the systems biology model organism Mycoplasma pneumoniae. Nucleic Acids Res. 43, D618–D623 (2015).
368
Schaff, J., Fink, C. C., Slepchenko, B., Carson, J. H. & Loew, L. M. A general computational framework for modeling cellular structure and function. Biophys. J. 73, 1135–1146 (1997).
369
Neves, S. R. Developing models in Virtual Cell. Sci. Signal. (2011). https://doi.org/10.1126/scisignal.2001970.
370
Лес Лоу и Михаил Блинов, интервью с Роджером Хайфилдом, 17 октября 2020 г.
371
Falkenberg, C. V. et al. Fragility of foot process morphology in kidney podocytes arises from chaotic spatial propagation of cytoskeletal instability. PloS Comput. Biol. 13, e1005433 (2017).
372
Singla, J. et al. Opportunities and challenges in building a spatiotemporal multi-scale model of the human pancreatic β cell. Cell (2018). https://doi.org/10.1016/j.cell.2018.03.014.
373
Novak, I. L. & Slepchenko, B. M. A conservative algorithm for parabolic problems in domains with moving boundaries. J. Comput. Phys. 270, 203–213 (2014).
374
Лес Лоу, электронное письмо Питеру Ковени и Роджеру Хайфилду, 13 июля 2021 г.
375
Cowan, A. E., Mendes, P. & Blinov, M. L. ModelBricks—modules for reproducible modeling improving model annotation and provenance. Npj Syst. Biol. Appl. (2019). https://doi.org/10.1038/s41540-019-0114-3.
376
Nurse, P. Systems biology: Understanding cells. Nature 424, 883 (2003).
377
Пол Нерс, интервью с Питером Ковени и Роджером Хайфилдом, 25 сентября 2021 г.
378
Klumpe, H. et al. The context-dependent, combinatorial logic of BMP signaling. bioRxiv (2020). https://doi.org/10.1101/2020.12.08.416503.
379
Nurse, P. & Hayles, J. The cell in an era of systems biology. Cell 144, 850–854 (2011).
380
Nurse, P. Life, logic and information. Nature (2008). https://doi.org/10.1038/454424a.
381
Butters, T. D., et al. Mechanistic links between Na+ channel (SCN5A) mutations and impaired cardiac pacemaking in sick sinus syndrome. Circ. Res. 107, 126–137 (2010).
382
Selvaggio, G. et al. Hybrid epithelial-mesenchymal phenotypes are controlled by mi- croenvironmental factors. Cancer Res. (2020). https://doi.org/10.1158/0008-5472.CAN-19-3147.
383
Celada, F. & Seiden, P. E. A computer model of cellular interactions in the immune system. Immunology Today (1992). https://doi.org/10.1016/0167-5699(92)90135-T.
384
Shilts, J., Severin, Y., Galaway, F. et al. A physical wiring diagram for the human immune system. Nature 608, 397–404 (2022). https://doi.org/10.1038/s41586-022-05028-x.
385
Celli, S. et al. How many dendritic cells are required to initiate a T-cell response? Blood (2012). https://doi.org/10.1182/blood-2012-01-408260.
386
Cockrell, R. C. & An, G. Examining the controllability of sepsis using genetic algorithms on an agent-based model of systemic inflammation. PloS Comput. Biol. (2018). https://doi.org/10.1371/journal.pcbi.1005876.
387
Ghaffarizadeh, A., Heiland, R., Friedman, S., Mumenthaler, S. & Macklin, P. PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems. PloS Comput. Biol. 14, e1005991 (2018).
388
Saxena, G., Ponce-de-Leon, M., Montagud, A., Vicente Dorca, D. & Valencia, A. BioFVM-X: An MPI+OpenMP 3-D simulator for biological systems. In Computational Methods in Systems Biology (eds. Cinquemani, E. & Paulevé, L.), 266–279 (Springer, 2021).
389
Читатели могут сами опробовать эту модель в веб-браузере: https://nanohub.org/tools/pc4cancerimmune.
390
Ozik, J. et al. High-throughput cancer hypothesis testing with an integrated PhysiCell- EMEWS workflow. BMC Bioinformatics 19, 483 (2018).
391
Getz, M. et al. Iterative community-driven development of a SARS-CoV-2 tissue simulator. bioRxiv (2021). https://doi.org/10.1101/2020.04.02.019075.
392
Fertig, E. J., Jaffee, E. M., Macklin, P., Stearns, V. & Wang, C. Forecasting cancer: From precision to predictive medicine. Med 2, 1004–1010 (2021).
393
Courtemanche, M. & Winfree, A. T. Re-entrant rotating waves in a Beeler—Reuter based model of two-dimensional cardiac electrical activity. Int. J. Bifurc. Chaos (1991). https://doi.org/10.1142/s0218127491000336.
394
Priebe, L. & Beuckelmann, D. J. Simulation study of cellular electric properties in heart failure. Circ. Res. (1998). https://doi.org/10.1161/01.RES.82.11.1206.
395
Marage, P. The Solvay Councils and the Birth of Modern Physics (Birkhäuser Verlag, 1999). https://doi.org/10.1007/978-3-0348-7703-9.
396
Coveney, P. V., Dougherty, E. R. & Highfield, R. R. Big data need big theory too. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2016). https://doi.org/10.1098/rsta.2016.0153.
397
Coveney, P. V., Boon, J. P. & Succi, S. Bridging the gaps at the physics-chemistry-biology interface. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2016). https://doi.org/10.1098/rsta.2016.0335.
398
Di Natale, F. et al. A massively parallel infrastructure for adaptive multiscale simulations: Modeling RAS initiation pathway for cancer. Proc. Int. Conf. High Performance Comput., Networking, Storage and Analysis (ACM, 2019). https://doi.org/10.1145/3295500.3356197.
399
Saadi, A. A., et al. IMPECCABLE: Integrated modeling pipeline for COVID cure by assessing better leads. 50th Int. Conf. Parallel Process. (ACM, 2021). https://doi.org/10.1145/3472456.3473524.
400
Wan, S., Bhati, A. P., Zasada, S. J. & Coveney, P. V. Rapid, accurate, precise and reproducible ligand—protein binding free energy prediction. Interface Focus 10, 20200007 (2020).
401
Warshel, A. & Karplus, M. Calculation of ground and excited state potential surfaces of conjugated molecules: I. Formulation and parametrization. J. Am. Chem. Soc. 94, 5612–5625 (1972).
402
Warshel, A. & Levitt, M. Theoretical studies of enzymic reactions: Dielectric, electro- static and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103, 227–249 (1976).
403
Delgado-Buscalioni, R. & Coveney, P. V. Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow. Phys. Rev. E. – Stat. Nonlinear Soft Matter Phys. 67, 46704 (2003).
404
Carrel, A. On the permanent life of tissues outside of the organism. J. Exp. Med. 15, 516–528 (1912).
405
Rudolph, F. et al. Deconstructing sarcomeric structure—function relations in titin-BioID knock-in mice. Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-16929-8.
406
Zernicka-Goetz, M. & Highfield, R. The Dance of Life (W. H. Allen, 2020).
407
Hunter, P. J. & Borg, T. K. Integration from proteins to organs: The Physiome Project. Nature Rev. Mol. Cell Biol. (2003). https://doi.org/10.1038/nrm1054.
408
LeGrice, I. J. et al. Laminar structure of the heart: Ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. – Heart Circ. Physiol. (1995). https://doi.org/10.1152/ajpheart.1995.269.2.h571.
409
Chen, Z. & Auffray, C. (eds.). The Selected Papers of Denis Noble CBE FRS: A Journey in Physiology towards Enlightenment (Imperial College Press, 2012).
410
Денис Нобл, электронное письмо Роджеру Хайфилду, 28 мая 2021 г.
411
Hunter, P. J., McNaughton, P. A. & Noble, D. Analytical models of propagation in excitable cells. Prog. Biophys. Mol. Biol. 30, 99–144 (1975).
412
LeGrice, I. J., Hunter, P. J. & Smaill, B. H. Laminar structure of the heart: A mathematical model. Am. J. Physiol. – Heart Circ. Physiol. (1997). https://doi.org/10.1152/ajpheart.1997.272.5.h2466.
413
Smith, N. P., Pullan, A. J. & Hunter, P. J. Generation of an anatomically based geometric coronary model. Ann. Biomed. Eng. (2000). https://doi.org/10.1114/1.250.
414
Hunter, P. J., Kohl, P. & Noble, D. Integrative models of the heart: Achievements and limitations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2001). https://doi.org/10.1098/rsta.2001.0816.
415
Chen, Z. & Auffray, C. (eds.). The Selected Papers of Denis Noble CBE FRS: A Journey in Physiology towards Enlightenment (Imperial College Press, 2012).
416
Southern, J. et al. Multi-scale computational modelling in biology and physiology. Prog. Biophys. Mol. Biol. (2008). https://doi.org/10.1016/j.pbiomolbio.2007.07.019.
417
Baillargeon, B., Rebelo, N., Fox, D. D., Taylor, R. L. & Kuhl, E. The Living Heart Project: A robust and integrative simulator for human heart function. Eur. J. Mech. A/Solids (2014). https://doi.org/10.1016/j.euromechsol.2014.04.001.
418
Watanabe, H., Sugiura, S. & Hisada, T. The looped heart does not save energy by main- taining the momentum of blood flowing in the ventricle. Am. J. Physiol. Heart Circ. Physiol. 294, H2191–H2196 (2008).
419
Мариано Васкес, интервью с Роджером Хайфилдом, 4 сентября 2021 г.
420
Мариано Васкес, электронное письмо Роджеру Хайфилду от 23 января 2021 г.
421
Zhao, J. et al. Three-dimensional integrated functional, structural, and computational mapping to define the structural “fingerprints” of heart-specific atrial fibrillation drivers in human heart ex vivo. J. Am. Heart Assoc. (2017). https://doi.org/10.1161/JAHA.117.005922.
422
Марк Палмер, Digital Twins in Healthcare, конференция CompBioMed, 17 сентября 2021 г.
423
Corral-Acero, J. et al. The “Digital Twin” to enable the vision of precision cardiology. Eur. Heart J. (2020). https://doi.org/10.1093/eurheartj/ehaa159.
424
Chen, Z. et al. Biophysical modeling predicts ventricular tachycardia inducibility and circuit morphology: A combined clinical validation and computer modeling approach. J. Cardiovasc. Electrophysiol. (2016). https://doi.org/10.1111/jce.12991.
425
Kayvanpour, E. et al. Towards personalized cardiology: Multi-scale modeling of the failing heart. PloS One (2015). https://doi.org/10.1371/journal.pone.0134869.
426
Гернот Планк, Automating Workflows for Creating Digital Twins of Cardiac Electrophysiology from Non-invasive Data, конференция CompBioMed, 16 сентября 2021 г.
427
Gillette, K. et al. A framework for the generation of digital twins of cardiac electrophysiology from clinical 12-leads ECGs. Med. Image Anal., 102080 (2021). https://doi.org/10.1016/j.media.2021.102080.
428
Ushenin, K., Kalinin, V., Gitinova, S., Sopov, O. & Solovyova, O. Parameter variations in personalized electrophysiological models of human heart ventricles. PloS One 16, e0249062 (2021).
429
El Faquir, N. et al. Patient-specific computer simulation in TAVR with the self- expanding Evolut R valve. JACC Cardiovasc. Interv. (2020). https://doi.org/10.1016/j.jcin.2020.04.018.
430
Morrison, T. M., Dreher, M. L., Nagaraja, S., Angelone, L. M. & Kainz, W. The role of computational modeling and simulation in the total product life cycle of peripheral vascular devices. J. Med. Devices, Trans. ASME (2017). https://doi.org/10.1115/1.4035866.
431
Patel, M. R. et al. 1-year impact on medical practice and clinical outcomes of FFRCT: The ADVANCE Registry. JACC Cardiovasc. Imaging (2020). https://doi.org/10.1016/j.jcmg.2019.03.003.
432
Baillargeon, B., Rebelo, N., Fox, D. D., Taylor, R. L. & Kuhl, E. The Living Heart Project: A robust and integrative simulator for human heart function. Eur. J. Mech. A/Solids (2014). https://doi.org/10.1016/j.euromechsol.2014.04.001.
433
Viceconti, M. et al. In silico trials: Verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods 185, 120–127 (2021).
434
Sahli Costabal, F. et al. Multiscale characterization of heart failure. Acta Biomater (2019). https://doi.org/10.1016/j.actbio.2018.12.053.
435
Roney, C. H. et al. Variability in pulmonary vein electrophysiology and fibrosis deter- mines arrhythmia susceptibility and dynamics. PloS Comput. Biol. (2018). https://doi.org/10.1371/journal.pcbi.1006166.
436
Boyle, P. M. et al. Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nat. Biomed. Eng. 3, 870–879 (2019).
437
Arevalo, H. J. et al. Arrhythmia risk stratification of patients after myocardial infarc- tion using personalized heart models. Nat. Commun. (2016). https://doi.org/10.1038/ncomms11437.
438
Hose, D. R. et al. Cardiovascular models for personalised medicine: Where now and where next? Med. Eng. Phys. 72, 38–48 (2019).
439
Kaboudian, A., Cherry, E. M. & Fenton, F. H. Real-time interactive simulations of large- scale systems on personal computers and cell phones: Toward patient-specific heart modeling and other applications. Sci. Adv. 5 (2019).
440
Стив Нидерер, интервью с Роджером Хайфилдом, 10 августа 2021 г.
441
Mandel, W., Oulbacha, R., Roy-Beaudry, M., Parent, S. & Kadoury, S. Image-guided tethering spine surgery with outcome prediction using spatio-temporal dynamic networks. IEEE Trans. Med. Imaging 40, 491–502 (2021).
442
Niederer, S. A., Lumens, J. & Trayanova, N. A. Computational models in cardiology. Nat. Rev. Cardiol. 16, 100–111 (2019).
443
Гернот Планк, электронное письмо Питеру Ковени, 4 октября 2021 г.
444
Moss, R. et al. Virtual patients and sensitivity analysis of the Guyton model of blood pressure regulation: Towards individualized models of whole-body physiology. PloS Comput. Biol. 8, e1002571 (2012).
445
Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Clarendon Press, 2001).
446
Succi, S. The Lattice Boltzmann Equation for Complex States of Flowing Matter. (Oxford University Press, 2018).
447
Coveney, P., Díaz-Zuccarini, V., Hunter, P. & Viceconti, M. Computational Biomedicine (Oxford University Press, 2014).
448
Zacharoudiou, I., McCullough, J.W.S. & Coveney, P. V. Development and performance of HemeLB GPU code for human-scale blood flow simulation. Comput. Phys. Commun., 282 108548 (2023), https://doi.org/10.1016/j.cpc.2022.108548.
449
McCullough, J. W. S. et al. Towards blood flow in the virtual human: Efficient self- coupling of HemeLB. Interface Focus (December 2020). https://doi.org/10.1098/rsfs.2019.0119.
450
Hoekstra, A. G., Chopard, B., Coster, D., Zwart, S. P. & Coveney, P. V. Multiscale computing for science and engineering in the era of exascale performance. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2019). https://doi.org/10.1098/rsta.2018.0144.
451
McCullough, J.W.S. & Coveney, P. V. High fidelity physiological blood flow in patient- specific arteriovenous fistula for clinical applications. Sci. Rep. 11(1), 22301 (2020).
452
Randles, A., Draeger, E. W., Oppelstrup, T., Krauss, L. & Gunnels, J. A. Massively parallel models of the human circulatory system. Proc. Int. Conf. High Performance Comput., Net- working, Storage and Analysis (ACM, 2015). https://doi.org/10.1145/2807591.2807676.
453
Augustin, C. M. et al. A computationally efficient physiologically comprehensive 3D–0D closed-loop model of the heart and circulation. Comput. Methods Appl. Mech. Eng. 386, 114092 (2021).
454
Гернот Планк, электронное письмо Питеру Ковени, 4 октября 2021 г.
455
Holmes, R. Science fiction: The science that fed Frankenstein. Nature (2016). https://doi.org/10.1038/535490a.
456
Пер. В. Микушевича.
457
St. Martin’s Hall, “On the Advisableness of Improving Natural Knowledge”, Fortnightly Review, 1866, vol. 3, 62.
458
Sharma, D. et al. Technical note: In silico imaging tools from the VICTRE clinical trial. Med. Phys. (2019). https://doi.org/10.1002/mp.13674.
459
Ваньи Фу, «i-Phantom Framework», конференция CompBioMed, 17 сентября 2021 г.
460
Питер Хантер, интервью с Питером Ковени и Роджером Хайфилдом, 23 октября 2020 г.
461
Hunter, P. J. & Borg, T. K. Integration from proteins to organs: The Physiome Project. Nature Rev. Mol. Cell Biol. (2003). https://doi.org/10.1038/nrm1054.
462
De Micheli, A. J. et al. Single-cell analysis of the muscle stem cell hierarchy identifies heterotypic communication signals involved in skeletal muscle regeneration. Cell Rep. (2020). https://doi.org/10.1016/j.celrep.2020.02.067.
463
Robinson, J. L. et al. An atlas of human metabolism. Sci. Signal. 13 (2020).
464
Liu, Q., Wu, B., Zeng, S. & Luo, Q. Human physiome based on the high-resolution dataset of human body structure. Prog. Nat. Sci. 18, 921–925 (2008).
465
Benias, P. C. et al. Structure and distribution of an unrecognized interstitium in human tissues. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-23062-6.
466
Highfield, R. Cravings: How to trick the brain into thinking you’re full. Newsweek (Jan- uary 24, 2015). https://www.newsweek.com/2015/01/30/cravings-how-food-controls-our-brains-301495.html.
467
Питер Хантер, интервью с Питером Ковени и Роджером Хайфилдом, 23 октября 2020.
468
National Institutes of Health. Stimulating peripheral activity to relieve conditions (SPARC) (2022). https://commonfund.nih.gov/sparc/.
469
Питер Хантер, интервью с Питером Ковени и Роджером Хайфилдом, 23 октября 2020.
470
Costa, M. C. et al. Biomechanical assessment of vertebrae with lytic metastases with subject-specific finite element models. J. Mech. Behav. Biomed. Mater. (2019). https:// doi.org/10.1016/j.jmbbm.2019.06.027.
471
Grünwald, A.T.D., Roy, S., Alves-Pinto, A. & Lampe, R. Assessment of adolescent idio- pathic scoliosis from body scanner image by finite element simulations. PloS One 16, e0243736 (2021).
472
Pitto, L. et al. SimCP: A simulation platform to predict gait performance following orthopedic intervention in children with cerebral palsy. Front. Neurorobot. 13, 54 (2019).
473
Bozkurt, S. et al. Computational modelling of patient specific spring assisted lambdoid craniosynostosis correction. Sci. Rep. 10, 18693 (2020).
474
Tawhai, M. H. & Hunter, P. J. Modeling water vapor and heat transfer in the normal and the intubated airways. Ann. Biomed. Eng. (2004). https://doi.org/10.1023/B: ABME.0000019180.03565.7e.
475
Lin, C. L., Tawhai, M. H., McLennan, G. & Hoffman, E. A. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir. Physiol. Neurobiol. (2007). https://doi.org/10.1016/j.resp.2007.02.006.
476
Burrowes, K. S., Swan, A. J., Warren, N. J. & Tawhai, M. H. Towards a virtual lung: Multi- scale, multi-physics modelling of the pulmonary system. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2008). https://doi.org/10.1098/rsta.2008.0073.
477
Auckland Bioengineering Institute. MedTech CORE—lung simulation. https://sites.bioeng.auckland.ac.nz/medtech/lungs/.
478
Tawhai, M. H., Clark, A. R. & Chase, J. G. The Lung Physiome and virtual patient models: From morphometry to clinical translation. Morphologie (2019). https://doi.org/10.1016/j.morpho.2019.09.003.
479
Chan, H.-F., Collier, G. J., Parra-Robles, J. & Wild, J. M. Finite element simulations of hyperpolarized gas DWI in micro-CT meshes of acinar airways: Validating the cylinder and stretched exponential models of lung microstructural length scales. Magn. Reson. Med. 86, 514–525 (2021).
480
Corley, R. A. et al. Comparative computational modeling of airflows and vapor dosimetry in the respiratory tracts of rat, monkey, and human. Toxicol. Sci. (2012). https://doi.org/10.1093/toxsci/kfs168.
481
Calmet, H. et al. Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation. Comput. Biol. Med. 69, 166–180 (2016).
482
Franiatte, S., Clarke, R. & Ho, H. A computational model for hepatotoxicity by coupling drug transport and acetaminophen metabolism equations. Int. J. Numer. Method. Biomed. Eng. (2019). https://doi.org/10.1002/cnm.3234.
483
Muller, A., Clarke, R. & Ho, H. Fast blood-flow simulation for large arterial trees con- taining thousands of vessels. Comput. Methods Biomech. Biomed. Engin. (2017). https://doi.org/10.1080/10255842.2016.1207170.
484
Ho, H., Yu, H. B., Bartlett, A. & Hunter, P. An in silico pipeline for subject-specific hemodynamics analysis in liver surgery planning. Comput. Methods Biomech. Biomed. Engin. (2020). https://doi.org/10.1080/10255842.2019.1708335.
485
Ho, H., Bartlett, A. & Hunter, P. Virtual liver models in pre-surgical planning, intrasurgical navigation and prognosis analysis. Drug Discovery Today: Disease Models (2016). https://doi.org/10.1016/j.ddmod.2017.09.003.
486
Hoehme, S. et al. Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proc. Natl. Acad. Sci. U. S. A. (2010). https://doi.org/10.1073/pnas.0909374107.
487
Meyer, K. et al. A predictive 3D multi-scale model of biliary fluid dynamics in the liver lobule. Cell Syst. (2017). https://doi.org/10.1016/j.cels.2017.02.008.
488
Brown, S. A. et al. Six-month randomized, multicenter trial of closed-loop control in type 1 diabetes. N. Engl. J. Med. 381, 1707–1717 (2019).
489
Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PloS Biol. (2016). https://doi.org/10.1371/journal.pbio.1002533.
490
Amato, K. R. et al. Convergence of human and Old World monkey gut microbiomes demonstrates the importance of human ecology over phylogeny. Genome Biol. (2019). https://doi.org./10.1186/s13059-019-1807-z.
491
Mao, J. H. et al. Genetic and metabolic links between the murine microbiome and memory. Microbiome (2020). https://doi.org/10.1186/s40168-020-00817-w.
492
Muangkram, Y., Honda, M., Amano, A., Himeno, Y. & Noma, A. Exploring the role of fatigue-related metabolite activity during high-intensity exercise using a simplified whole-body mathematical model. Informatics Med. Unlocked 19, 100355 (2020).
493
Brunk, E. et al. Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat. Biotechnol. 36, 272–281 (2018).
494
Thiele, I. et al. Personalized whole-body models integrate metabolism, physiology, and the gut microbiome. Mol. Syst. Biol. 16, e8982 (2020).
495
Rzechorzek, N. M., et al. A daily temperature rhythm in the human brain predicts survival after brain injury. Brain (2022). https://doi.org/10.1093/brain/awab466.
496
Shapson-Coe, A. et al. A connectomic study of a petascale fragment of human cerebral cortex. bioRxiv (2021). https://doi.org/10.1101/2021.05.29.446289.
497
Abbott, A. How the world’s biggest brain maps could transform neuroscience. Nature 598, 22–25 (2021).
498
Arnulfo, G. et al. Long-range phase synchronization of high-frequency oscillations in human cortex. Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-18975-8.
499
Wagstyl, K. et al. BigBrain 3D atlas of cortical layers: Cortical and laminar thickness gra- dients diverge in sensory and motor cortices. PloS Biol. (2020). https://doi.org/10.1371/journal.pbio.3000678.
500
Giacopelli, G., Migliore, M. & Tegolo, D. Graph-theoretical derivation of brain structural connectivity. Appl. Math. Comput. (2020). https://doi.org/10.1016/j.amc.2020.125150.
501
Wybo, W. A. et al. Data-driven reduction of dendritic morphologies with preserved dendro-somatic responses. Elife (2021). https://doi.org/10.7554/elife.60936.
502
Squair, J. W. et al. Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury. Nature (2021). https://doi.org/10.1038/s41586-020-03180-w.
503
Neurotwin. https://www.neurotwin.eu/.
504
Highfield, R. How a magnet turned off my speech. Daily Telegraph (May 16, 2008). https:// www.telegraph.co.uk/news/science/science-news/3342331/How-a-magnet-turned-off-my-speech.html.
505
Olmi, S., Petkoski, S., Guye, M., Bartolomei, F. & Jirsa, V. Controlling seizure propaga- tion in large-scale brain networks. PloS Comput. Biol. (2019). https://doi.org/10.1371/journal.pcbi.1006805.
506
Симона Олми, электронное письмо Питеру Ковени и Роджеру Хайфилду, 12 апреля 2021 г.
507
Виктор Йирса, электронное письмо Питеру Ковени и Роджеру Хайфилду, 9 октября 2021 г.
508
Aerts, H. et al. Modeling brain dynamics after tumor resection using The Virtual Brain.Neuroimage (2020). https://doi.org/10.1016/j.neuroimage.2020.116738.
509
Falcon, M. I. et al. Functional mechanisms of recovery after chronic stroke: Modeling with The Virtual Brain. eNeuro (2016). https://doi.org/10.1523/ENEURO.0158-15.2016.
510
Akil, H., Martone, M. E. & Van Essen, D. C. Challenges and opportunities in mining neuroscience data. Science (2011). https://doi.org/10.1126/science.1199305.
511
Pashkovski, S. L. et al. Structure and flexibility in cortical representations of odour space. Nature (2020). https://doi.org/10.1038/s41586-020-2451-1.
512
Роджер Пенроуз в беседе с Дэвидом Эйзенбадом, An Evening with Sir Roger Penrose, Royal Society, 8 июня 2022 г.
513
Turing, A. M. On computable numbers, with an application to the Entscheidungsprob- lem. Proc. London Math. Soc. (1937). https://doi.org/10.1112/plms/s2–42.1.230.
514
Church, A. An unsolvable problem of elementary number theory. Am. J. Math. (1936). https://doi.org/10.2307/2371045.
515
Penrose, R. What is reality? New Sci. (2006). https://doi.org/10.1016/S0262-4079(06) 61094-4.
516
По словам Роджера Пенроуза, «есть особенности физических законов <…>, которые выходят за рамки известных нам исчислимых законов, и единственное место для таких законов – это коллапс волновой функции, особенность квантовой механики, которая не объяснена современной теорией».
517
Hameroff, S. & Penrose, R. Consciousness in the universe: A review of the “Orch OR” theory. Phys. Life Rev. 11, 39–78 (2014).
518
Krittian, S.B.S. et al. A finite-element approach to the direct computation of relative cardiovascular pressure from time-resolved MR velocity data. Med. Image Anal. (2012). https://doi.org/10.1016/j.media.2012.04.003.
519
Babbage, C. Passages from the Life of a Philosopher. Cambridge Library Collection— Technology (Cambridge University Press, 2011). https://doi.org/10.1017/CBO9781139 103671.
520
Kendon, V. M., Nemoto, K. & Munro, W. J. Quantum analogue computing. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (2010). https://doi.org/10.1098/rsta.2010.0017.
521
Cowan, G.E.R., Melville, R. C. & Tsividis, Y.P.A VLSI analog computer/digital computer accelerator. IEEE J. Solid-State Circuits 41, 42–53 (2006).
522
Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).
523
Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi 10, 509–514 (1968).
524
Эта работа также вызвала огромный интерес, поскольку предполагала, что метаматериалы могут иметь отрицательный показатель преломления, неизвестный в то время в природе, но постулированный десятилетиями ранее российским физиком Виктором Веселаго после экспериментов с уравнениями Максвелла.
525
Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).
526
Molnár, B., Molnár, F., Varga, M., Toroczkai, Z. & Ercsey-Ravasz, M. A continuous-time MaxSAT solver with high analog performance. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-07327-2.
527
Alù, A. & Engheta, N. Achieving transparency with plasmonic and metamaterial coat- ings. Phys. Rev. E—Stat. Nonlinear, Soft Matter Phys. (2005). https://doi.org/10.1103/Phys RevE.72.016623.
528
Silva, A. et al. Performing mathematical operations with metamaterials. Science (2014). https://doi.org/10.1126/science.1242818.
529
Camacho, M., Edwards, B. & Engheta, N. A single inverse-designed photonic structure that performs parallel computing. Nat. Commun. 12, 1466 (2021).
530
Estakhri, N. M., Edwards, B. & Engheta, N. Inverse-designed metastructures that solve equations. Science (2019). https://doi.org/10.1126/science.aaw2498.
531
Надер Энгета, электронное письмо Роджеру Хайфилду, 18 марта 2021 г.
532
Stroev, N. & Berloff, N. G. Discrete polynomial optimization with coherent networks of condensates and complex coupling switching. Phys. Rev. Lett. 126, 50504 (2021).
533
Mead, C. Neuromorphic electronic systems. Proc. IEEE (1990). https://doi.org/10.1109/5.58356.
534
Kumar, S., Williams, R. S. & Wang, Z. Third-order nanocircuit elements for neuromor- phic engineering. Nature (2020). https://doi.org/10.1038/s41586-020-2735-5.
535
Стэн Уильямс и Сухас Кумар, интервью с Питером Ковени и Роджером Хайфилдом, 2 октября 2020 г.
536
Chua, L. O. Memristor—the missing circuit element. IEEE Trans. Circuit Theory (1971). https://doi.org/10.1109/TCT.1971.1083337.
537
Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature (2008) https://doi.org/10.1038/nature06932.
538
Joksas, D. et al. Committee machines—a universal method to deal with non-idealities in memristor-based neural networks. Nat. Commun. 11, 4273 (2020).
539
Chua, L., Sbitnev, V. & Kim, H. Hodgkin-Huxley axon is made of memristors. Int. J. Bifurcation and Chaos (2012). https://doi.org/10.1142/S021812741230011X.
540
Леон Чуа, 7-й симпозиум по мемристорам и мемристивам в Катании, Италия, 1 октября 2021 г.
541
Brown, T. D., Kumar, S. & Williams, R. S. Physics-based compact modeling of electro- thermal memristors: Negative differential resistance, local activity, and non-local dynamical bifurcations. Appl. Phys. Rev. 9, 11308 (2022).
542
Furber, S. SpiNNaker: A Spiking Neural Network Architecture (Now Publishers, 2020).
543
Стив Фербер, интервью с Роджером Хайфилдом и Питером Ковени, 30 октября 2021 г.
544
Стив Фербер, электронное письмо Роджеру Хайфилду и Питеру Ковени, 18 ноября 2021 г.
545
Йоханнес Шеммель, интервью с Питером Ковени и Роджером Хайфилдом, 23 ноября 2021 г.
546
Yao, P. et al. Face classification using electronic synapses. Nat. Commun. (2017). https:// doi.org/10.1038/ncomms15199.
547
Pei, J. et al. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature (2019). https://doi.org/10.1038/s41586-019-1424-8.
548
Masanes, L., Galley, T. D. & Müller, M. P. The measurement postulates of quantum mechanics are operationally redundant. Nat. Commun. 10, 1–6 (2019).
549
Rae, A. Quantum Physics: Illusion or Reality? 2nd ed. (Cambridge University Press, 2012).
550
Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. (1982). https:// doi.org/10.1007/BF02650179.
551
Deutsch, D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. London, Ser. A Math. Phys. Sci. (1985). https://doi.org/10.1098/rspa.1985.0070.
552
Shor, P. W. Algorithms for quantum computation: Discrete logarithms and factoring. Proc. 35th Ann. Sym. Found. Comput. Sci., 124–134 (1994). https://doi.org/10.1109/SFCS.1994.365700.
553
Lloyd, S. A potentially realizable quantum computer. Science (1993). https://doi.org/10.1126/science.261.5128.1569.
554
Salart, D., Baas, A., Branciard, C., Gisin, N. & Zbinden, H. Testing the speed of “spooky action at a distance”. Nature (2008). https://doi.org/10.1038/nature07121.
555
Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).
556
Сет Ллойд, интервью с Роджером Хайфилдом, 22 мая 2018 г.
557
Ralli, A., Williams, M. I. & Coveney, P. V. A scalable approach to quantum simulation via projection-based embedding. arXiv (2022). https://doi.org/10.48550/arxiv.2203.01135.
558
Питер Лав, электронное письмо Питеру Ковени и Роджеру Хайфилду, 23 ноября 2021 г.
559
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature (2019). https://doi.org/10.1038/s41586-019-1666-5.
560
Oak Ridge National Laboratory. Quantum supremacy milestone harnesses ORNL Summit supercomputer. Press release (October 23, 2019). https://www.ornl.gov/news/quantum-supremacy-milestone-harnesses-ornl-summit-supercomputer.
561
Oliver, W. D. Quantum computing takes flight: Expert insight into current research. Nature 574, 487–488 (2019).
562
Pan, F., Chen, K. & Zhang, P. Solving the sampling problem of the Sycamore quantum circuits. https://arxiv.org/abs/2111.03011
563
Zhong, H.-S. et al. Quantum computational advantage using photons. Science (2021). https://doi.org/10.1126/science.abe8770.
564
Чаоян Лу, электронное письмо Роджеру Хайфилду, 28 декабря 2020 г.
565
Zhong, H.-S. et al. Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Letters 127, 180502 (2021).
566
Banchi, L., Quesada, N. & Arrazola, J. M. Training Gaussian boson sampling distribu- tions. Phys. Rev. A 102, 12417 (2020).
567
Banchi, L., Fingerhuth, M., Babej, T., Ing, C. & Arrazola, J. M. Molecular docking with Gaussian boson sampling. Sci. Adv. 6, eaax1950 (2020).
568
Jahangiri, S., Arrazola, J. M., Quesada, N. & Killoran, N. Point processes with Gaussian boson sampling. Phys. Rev. E 101, 022134 (2020).
569
Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).
570
Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. arXiv (2014). https://doi.org/10.48550/arxiv.1411.4028.
571
Ralli, A., Love, P., Tranter, A. & Coveney, P. Implementation of measurement reduction for the variational quantum eigensolver. Phys. Rev. Res. 3, 033195 (2021).
572
Гиппократ. Избранные книги / Пер. с греч. В. И. Руднева. 1936.
573
Henshilwood, C. S. et al. An abstract drawing from the 73,000-year-old levels at Blom- bos Cave, South Africa. Nature (2018). https://doi.org/10.1038/s41586-018-0514-3.
574
Hublin, J. J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature (2017). https://doi.org/10.1038/nature22336.
575
Джо Мерчант, интервью с Роджером Хайфилдом, 2 сентября 2020 г.
576
Marchant, J. The Human Cosmos: A Secret History of the Stars (Canongate, 2020).
577
Aubert, M. et al. Pleistocene cave art from Sulawesi, Indonesia. Nature (2014). https:// doi.org/10.1038/nature13422.
578
Conard, N. J. A female figurine from the basal Aurignacian of Hohle Fels Cave in south- western Germany. Nature (2009). https://doi.org/10.1038/nature07995.
579
McCoid, C. H. & McDermott, L. D. Toward decolonizing gender: Female vision in the Upper Paleolithic. Am. Anthropol. (1996). https://doi.org/10.1525/aa.1996.98.2.02a00080.
580
Highfield, R. The Physics of Christmas: From the Aerodynamics of Reindeer to the Thermodynamics of Turkey (Little, Brown, 1998).
581
Longest, P. W. et al. Use of computational fluid dynamics deposition modeling in respiratory drug delivery. Expert Opin. Drug Deliv. 16, 7–26 (2019).
582
Wouters, O. J., McKee, M. & Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. J. Am. Med. Assoc. (2020). https://doi.org/10.1001/jama.2020.1166.
583
Turner, E. H., Matthews, A. M., Linardatos, E., Tell, R. A. & Rosenthal, R. Selective pub- lication of antidepressant trials and its influence on apparent efficacy. N. Engl. J. Med. (2008). https://doi.org/10.1056/nejmsa065779.
584
Jefferson, T. et al. Neuraminidase inhibitors for preventing and treating influenza in adults and children. Cochrane Database Sys. Rev. (2014). https://doi.org/10.1002/14651858.CD008965.pub4.
585
Kam-Hansen, S. et al. Altered placebo and drug labeling changes the outcome of episodic migraine attacks. Sci. Transl. Med. (2014). https://doi.org/10.1126/scitransl med.3006175.
586
Leucht, S., Helfer, B., Gartlehner, G. & Davis, J. M. How effective are common medica- tions?: A perspective based on meta-analyses of major drugs. BMC Med. (2015). https://doi.org/10.1186/s12916-015-0494-1.
587
Питер Хантер, интервью с Роджером Хайфилдом, 23 октября 2020 г.
588
Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: From poly- genic to omnigenic. Cell 169, 1177–1186 (2017).
589
MacKenzie, A. & Kolb, A. The human genome at 20: How biology’s most-hyped break- through led to anticlimax and arrests. Phys.org (2021). https://phys.org/news/2021-02-human-genome-biology-most-hyped-breakthrough.amp.
590
ENCODE Project Consortium. The ENCODE (encyclopedia of DNA elements) Project. Science 306, 636–640 (2004).
591
Hall, W. D., Mathews, R. & Morley, K. I. Being more realistic about the public health impact of genomic medicine. PloS Med. (2010). https://doi.org/10.1371/journal.pmed.1000347.
592
McGuire, A. L. et al. The road ahead in genetics and genomics. Nature Rev. Genetics (2020). https://doi.org/10.1038/s41576-020-0272-6.
593
Bhati, A. P. et al. Pandemic drugs at pandemic speed: Infrastructure for accelerating COVID-19 drug discovery with hybrid machine learning- and physics-based simulations on high-performance computers. Interface Focus 11, 20210018 (2021).
594
Wan, S., Bhati, A. P., Wade, A. D., Alfè, D. & Coveney, P. V. Thermodynamic and structural insights into the repurposing of drugs that bind to SARS-CoV-2 main protease. Mol. Sys. Des. Eng. (2021). https://doi.org/10.33774/chemrxiv-2021-03NRL–V2.
595
Price, N. D. et al. A wellness study of 108 individuals using personal, dense, dynamic data clouds. Nat. Biotechnol. 35, 747–756 (2017).
596
Лерой Худ, интервью с Питером Ковени и Роджером Хайфилдом, 14 августа 2021 г.
597
Earls, J. C. et al. Multi-omic biological age estimation and its correlation with wellness and disease phenotypes: A longitudinal study of 3,558 individuals. J. Gerontol. Ser. A 74, S52–S60 (2019).
598
Худ, интервью Ковени и Хайфилду, 14 августа 2021 г.
599
Niederer, S. A., Sacks, M. S., Girolami, M. & Willcox, K. Scaling digital twins from the artisanal to the industrial. Nat. Comput. Sci. 1, 313–320 (2021).
600
Voigt, I. et al. Digital twins for multiple sclerosis. Front. Immunol. 12, (2021).
601
Royal Society. Data management and use: Governance in the 21st century. Joint report by the British Academy and the Royal Society (June 2017). https://royalsociety.org/topics-policy/projects/data-governance/.
602
Nordling, L. A fairer way forward for AI in health care. Nature 573, S103–S105 (2019).
603
UN OHCHR. Artificial intelligence risks to privacy demand urgent action—Bachelet. Press release (September 15, 2021). https://www.ohchr.org/EN/NewsEvents/Pages/media.aspx?IsMediaPage=true.
604
de Kerckhove, D. The personal digital twin, ethical considerations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 379, 20200367 (2021).
605
Bruynseels, K., de Sio, F. S. & van den Hoven, J. Digital twins in health care: Ethical implications of an emerging engineering paradigm. Front. Genet. (2018). https://doi.org/10.3389/fgene.2018.00031.
606
Филип Лютерт, электронное письмо Питеру Ковени, 16 августа 2021 г.
607
Shirasaki, M., Sugiyama, N. S., Takahashi, R. & Kitaura, F.-S. Constraining primordial non-Gaussianity with postreconstructed galaxy bispectrum in redshift space. Phys. Rev. D 103, 23506 (2021).
608
Coveney, P. & Highfield, R. Frontiers of Complexity: The Search for Order in a Chaotic World (Faber, 1996).
609
Hardy, J., de Pazzis, O. & Pomeau, Y. Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions. Phys. Rev. A 13, 1949–1961 (1976).
610
Wolfram, S. Cellular automaton fluids 1: Basic theory. J. Stat. Phys. 45, 471–526 (1986).
611
Liberati, S. Tests of Lorentz invariance: A 2013 update. Class. Quantum Gravity 30, 133001 (2013).
612
Chou, A. S. et al. First measurements of high frequency cross-spectra from a pair of large Michelson interferometers. Phys. Rev. Lett. 117, 111102 (2016).
613
Wolfram, S. A Project to Find the Fundamental Theory of Physics (Wolfram Media, 2020).
614
Gorard, J. Some relativistic and gravitational properties of the Wolfram model. Complex Syst. 29, 599–654 (2020).
615
Gorard, J., Namuduri, M. & Arsiwalla, X. D. ZX–Calculus and Extended Hypergraph Rewriting Systems I: A Multiway Approach to Categorical Quantum Information Theory. arXiv (2020). https://doi.org/10.48550/arxiv.2103.15820.
616
Джонатан Горард, интервью с Питером Ковени и Роджером Хайфилдом, 1 октября 2021 г.