Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать — страница 2 из 55

Намучившись с этими историями (название MERS — Middle East Respiratory Syndrome — придумывали целых пять месяцев), а также под давлением нынешней страшно обидчивой на все общественности, ВОЗ приняла новые правила наименований инфекций. Они должны включать только описание симптомов (например, «респираторный» или «дефицит»), указание затронутых групп (детский, мужской и т. д.), характера течения заболевания (острый, хронический), сезонности и тяжести. Еще можно пользоваться сквозной нумерацией (1, 2, 3, I, II, III, альфа, бета). Так что больше никаких «испанок», птичьих гриппов, лихорадок Эбола, Западного Нила и Крым-Конго или «уханьского коронавируса» (ну просится же, правда?). Только скучные шифры из букв и цифр. Зато исключительно нейтрально.


Второе важнейшее свойство вирусов, помимо сверхвысокой скорости размножения (ученые также говорят «репликации»), — повышенная склонность мутировать. Слово «мутация» сегодня окутано, так сказать, зловещим ореолом тайны, но на самом деле этим термином называют любое изменение в геноме вируса — и не только вируса, а, в принципе, любого обладателя генома. Мутации происходят по разным причинам: это может быть результат ошибки в работе фермента, копирующего генетическую информацию, или повреждения нуклеиновых кислот, например ультрафиолетом, рентгеном или особыми веществами-мутагенами. Наконец, мутации могут происходить сами по себе из-за естественного изменения нуклеотидов — «букв», из которых составлен геном.

Чаще всего мутации вредны, так как они изменяют, а то и вовсе делают нечитаемыми записанные в нуклеиновых кислотах «слова»-гены — вспомним заходеровских кита и кота. Но иногда мутации не меняют смысл генетического текста. Так происходит, если в результате замены буквы слово не меняет своего значения. Если перейти от текстовых метафор к реальной жизни, то появление нейтральных мутаций обусловлено двумя механизмами. Чтобы понять их, необходимо вспомнить азы биологии. Основные молекулы, которые обеспечивают все функции живых систем (или частично живых, вроде вирусов), — это белки. Белки — длинные молекулы, составленные из 20 базовых единиц-аминокислот. Последовательности всех белков в зашифрованном виде записаны на молекулах ДНК и РНК — смотря из чего состоит геном конкретного существа. Каждая аминокислота кодируется тремя нуклеотидами — единицами нуклеиновых кислот.

При этом генетический шифр, он же код, избыточен: одну и ту же аминокислоту могут кодировать разные тройки нуклеотидов. И это первая причина, по которой мутации зачастую никак не влияют на работу живых систем, если тройка, получившаяся после изменения, соответствует той же аминокислоте, что исходные три кодирующих нуклеотида. Другой способ получить нейтральную мутацию — изменить аминокислоту так, чтобы новообразованный белок сохранил свои функции. Так происходит, например, если мутация меняет аминокислоту где-нибудь на периферии белка и его работоспособность остается такой же или почти такой же. Если сравнить белок с автомобилем, то такая нейтральная мутация меняет, скажем, цвет кузова или форму фар.

Иногда свойства белка меняются так, что его новые функции приносят живому существу или вирусу ощутимую выгоду. Например, если вирусу для проникновения в клетку необходимо ухватиться за какой-нибудь вырост на ее поверхности, полезной окажется мутация, которая повышает его «липучесть», например за счет того, что «хватающий» вирусный белок прочнее цепляется за торчащий белок клетки.

Способствовать появлению исключительно полезных мутаций вирусы — как и любые другие существа — не могут. Мутация — всегда случайность, так что она может оказаться как выгодной, так и вредной или нейтральной. Но если в некоем организме мутации происходят очень часто, вероятность появления «правильных» мутаций за тот же отрезок времени возрастает (правда, не для этого конкретного организма, а для вида в целом). Для мутирующего частота появлений полезных, вредных и нейтральных мутаций остается неизменной, но так как в целом изменений оказывается намного больше, увеличиваются и шансы возникновения «правильных» мутаций. Вирусы могут увеличивать свою мутагенность{2} разными способами — например, фермент РНК- или ДНК-полимераза, который копирует их геномы, часто работает халтурно, допуская намного больше ошибок, чем, скажем, ферменты человека или лошади. Кроме того, геном многих вирусов не обязательно записан в стабильной двуцепочечной молекуле ДНК, как у всех остальных живых организмов. Вирусы могут хранить свою наследственную информацию в одноцепочечной ДНК или даже в РНК. Эти молекулы куда менее стабильны, и изменения в них происходят гораздо чаще, чем в ДНК. Особенно склонна к переменам РНК: некоторые РНК-содержащие вирусы мутируют в миллион(!) раз быстрее, чем их хозяева[1]. Такие рекордсмены по мутациям балансируют на грани допустимого: если еще немного увеличить скорость изменений, вирус погибнет, так как с огромной вероятностью за несколько циклов размножения мутации выведут из строя его ключевые ферменты. Мутационной дерзостью РНК-содержащих вирусов пользуются ученые, разрабатывающие средства борьбы с ними (мы подробнее поговорим об этом в разделе, посвященном лекарствам против коронавируса). Как вы уже догадались, его геном записан именно в молекуле РНК.

Счастливчики, которым достались полезные мутации, имеют больше шансов заразить новых хозяев и размножиться. Этот процесс — преимущественное выживание организмов, которые оказались более приспособленными к текущим условиям, — лежит в основе эволюции. И благодаря тому, что вирусы мутируют очень быстро — на порядки быстрее других организмов, — их эволюция также происходит стремительно. Скажем, еще вчера вирус умел размножаться только в летучих мышах, а уже сегодня хоп! — и научился проникать в клетки человека и реплицироваться в них (в реальности речь идет о более долгих сроках, но общий смысл таков).

Сочетание двух этих качеств — стремительного размножения и столь же стремительного мутирования — обеспечивает вирусам эволюционное процветание и звание лучших паразитов всех времен и народов. Благодаря первому инфекция развивается очень быстро, второе позволяет уходить от иммунного ответа и завоевывать новых хозяев. Да, бактерии тоже умеют быстро делиться и меняться, но от вирусов они отстают, условно говоря, на целую голову (если бы у кого-нибудь из них была голова). Ко всему прочему, до бактерий проще добраться, так как они не сидят внутри клеток.


Рис. 1. Множество вирусов есть у всех групп живых существ на планете — и даже у самих вирусов


Доказательство фантастической успешности вирусов — их зашкаливающее количество. И хотя точно подсчитать, сколько именно вирусов на планете, невозможно, согласно некоторым прикидочным оценкам[2], только в океане примерно четыре нониллиона вирусов. Нониллион — это единица с 30 нулями. Представить настолько гигантское число очень трудно, но, например, наше Солнце весит два нониллиона килограммов. Обитают вирусы, разумеется, не сами по себе, а внутри живых организмов: на планете нет существ, которые не были бы освоены вирусами. Звери, птицы, растения, грибы, бактерии — и даже сами вирусы: у всех них есть множество собственных вирусов, вызывающих всевозможные патологии. Некоторые вирусы строго специфичны и поражают только один вид, другие не столь разборчивы и могут перескакивать с хозяина на хозяина, приводя к появлению новых болезней. Именно так произошло с SARS-CoV-2.

Глава 2. Как устроен коронавирус

Строение

Как мы выяснили в предыдущей главе, вирусы завоевали мир благодаря высокой скорости размножения и повышенной мутагенности. При этом, если главные конкуренты вирусов за планетарное господство — люди — осваивают новые территории при помощи разнообразных сложных технологических устройств, вирусы, наоборот, достигают своей цели за счет предельного упрощения, правда очень затейливого. Все до единого вирусные гены работают только на одну задачу — заселить как можно больше клеток и синтезировать максимально возможное количество вирусных частиц, которые, в свою очередь, будут инфицировать всё новые и новые клетки. Самые маленькие геномы у РНК-содержащих вирусов: рекордсмены минимизации вроде вируса гепатита D обходятся всего 1700 нуклеотидами (генетическими буквами). Для сравнения: в геноме человека больше 3 млрд пар нуклеотидов.

Геном коронавирусов тоже записан в молекуле РНК, однако они самые крупные представители этой группы: в среднем у них около 29 000 нуклеотидов. В геномной РНК SARS-CoV-2 29 900 нуклеотидов, и они кодируют 16 генов. Часть из них — гены, обеспечивающие синтез собственных белков вируса, остальные нужны для того, чтобы хакнуть геном клетки, заставив ее работать в режиме вирусной фабрики, а также для обмана клеточных защитных систем. Все эти «хитрые» гены и белки возникли в результате длительного сосуществования коронавирусов и их хозяев: каждая новая придумка паразита, облегчающая его проникновение в клетку или размножение, повышала шансы именно этой вирусной разновидности остаться в ходе эволюции. В результате такой позиционной войны виновник нынешней пандемии получился весьма хитроумным и коварным.


Рис. 2. Частица SARS-CoV-2 — ограниченная липидной мембраной сфера размером около 95 нм без учета торчащих наружу тримеров спайк-белка и 120–130 нм с ними. Внутри компактно упакована геномная РНК, намотанная на каркас из N-белка — в реальной вирусной частице она занимает внутреннее пространство почти целиком. SARS-CoV-2 не слишком похож на другие человеческие коронавирусы — геном ближайшего родственника SARS отличается на целых 20 %. Зато с одним из коронавирусов летучих мышей RaTG13 он схож на 96 %. Не исключено, что ученым удастся найти в рукокрылых еще более близкие вирусы, от которых мог произойти SARS-CoV-2