Один из самых известных примеров суперраспространения SARS — история пациента номер ноль. 21 февраля 2003 года нефролог Лю Цзяньлунь прилетел в Гонконг на свадьбу к племяннику из китайской провинции Гуандун. Профессор Цзяньлунь уже несколько дней чувствовал себя не очень хорошо — поднялась температура и было тяжело дышать. На родине он участвовал в лечении одного из пациентов с SARS, но тем не менее маститый доктор решил, что у него остатки недавней пневмонии, которую Цзяньлунь, как он думал, вылечил, пропив курс антибиотиков. В Гонконге профессор остановился в гостинице Metropole в комнате 911. Вечером он прогулялся по городу и поужинал с родственником (к несчастью для последнего: тот заразился SARS и умер), а на следующее утро Цзяньлуню стало настолько плохо, что вместо свадьбы он с трудом добрался до соседней больницы. Врачи немедленно заподозрили атипичную пневмонию, но профессор яростно отрицал, что у него может быть «эта штука»[381]. 4 марта доктор Цзяньлунь скончался. Несмотря на то что профессор пробыл в гостинице всего одну ночь, атипичную пневмонию подхватили еще как минимум 13 постояльцев, живших на том же этаже. Они разнесли болезнь по разным странам, запустив эпидемию. После этой печальной истории гостиница сменила название — теперь это Metropark Hotel Kowloon, но гости все равно не желали селиться в печально известной комнате 911. Поэтому руководство изменило нумерацию, и сейчас на двери, которую открывал больной профессор Цзяньлунь, висит табличка 913.
Нынешний коронавирус отлично размножается в глотке и, вероятно, даже в ротовой полости, так что капельки с вирусными частицами легко добираются до слизистых потенциальных носителей, а заболевшие при этом ощущают себя вполне сносно: ездят в метро, ходят на работу и в клубы, катаются на горных лыжах, летая на курорты самолетами и пересаживаясь в заполненных людьми аэропортах. А так как сам вирус весьма приставучий, заражение происходит намного проще, чем в случае SARS. И тем не менее суперраспространители играют куда большую роль в продвижении вируса по планете, чем, например, для ветряной оспы, дисперсионный параметр k которой составляет внушительные 0,65[382].
Дисперсионный параметр COVID-19 точно не известен, но предварительно его оценивают в районе 0,4–0,45. Это хуже, чем для SARS, но лучше, чем для ветрянки. Расчеты показывают, что болезнь с R0=3 и k=0,1 можно задавить и не дать перерасти в полноценную эпидемию точечными мерами, когда половина всех усилий по контролю направлена на 20 % самых заразных носителей. Для SARS-CoV-2, очевидно, потребуется больше усилий — скажем, изолировать 40 % суперраспространителей (точно просчитать необходимое количество должны помочь соответствующие математические модели). При этом выявлять, кто из заразившихся является суперраспространителем, не нужно, тем более что мы все равно никак не можем этого сделать, по крайней мере пока. Достаточно применять точечные ограничительные меры, которые не дают таким людям проявить свой инфекционный потенциал.
Гипотезу о возможности сдерживать распространение болезней с маленьким и средним дисперсионным параметром k точечными мерами косвенно подтверждают несколько случаев локальных вспышек COVID-19 в странах, где коронавирус удалось быстро победить или почти победить. В начале мая в пригороде Сеула Итэвоне было зарегистрировано около 130 случаев заражения, притом что до этого уже много недель вновь инфицированных можно было пересчитать по пальцам одной руки. Все заразившиеся подхватили коронавирус в ночных клубах, по которым на выходных прошелся один суперраспространитель[383]. Примерно тогда же во Франкфурте-на-Майне состоялась традиционная служба в баптистской церкви. Через несколько дней в городе стало быстро расти число инфицированных COVID-19, и к концу месяца их было уже две сотни. За Франкфуртом последовал небольшой городок Бремерхафен: там тоже на службе в церкви заразилось минимум 44 человека[384]. Обычно такие сообщения воспринимаются с тревогой — мол, как бы опять не начался экспоненциальный рост. На самом деле это в некотором смысле хорошие новости. Тот факт, что после снятия ограничений новые случаи появляются не равномерно по популяции, а кластеризуются в местах большого скопления народа в замкнутых помещениях, указывает на «суперраспространительный» характер эпидемии. А это, в свою очередь, дает возможность загасить ее локальными интервенциями.
Ковровые ограничения — то есть всеобщие карантины — в случае болезней с промежуточными значениями k (как у COVID-19) работают хуже прицельных мероприятий. Они повышают гомогенность (однородность) популяции, а чтобы снизить шансы суперраспространителей заразить много людей, ее нужно, наоборот, уменьшать. Другими словами, при небольшом k точечными мерами можно добиться того же результата, что и повальным карантином, но гораздо дешевле и безопаснее для экономики. Всеобщий карантин для таких заболеваний осмысленно вводить только в крайних случаях, когда ситуация уже вышла из-под контроля, как было, скажем, в Италии.
Вторая работа, объясняющая, как кластеризация помогает нам бороться с эпидемией, посвящена параметру под названием «устойчивая гетерогенность» (persistent heterogeneity), в некотором смысле родственнику дисперсионного параметра[385]. Дисперсионный параметр определял, одинаково ли количество людей, которых может заразить каждый носитель. Смысл устойчивой гетерогенности сводится к тому, что разные люди в силу социальных и биологических причин в различной степени рискуют заразиться коронавирусом. Скажем, врачи, продавцы, обитатели домов престарелых или любители выпить в шумных барах после покатушек в Альпах в феврале-марте, пока еще не ввели ограничения, — очевидные группы риска. Граждане, дисциплинированно самоизолировавшиеся еще в начале весны, или те, кто в принципе всегда работает из дома, наоборот, находятся в относительной безопасности. Соответственно, первыми довольно резво перезаражаются люди из групп риска: для них Reff — эффективное репродуктивное число, то есть количество заразившихся от одного носителя в этой конкретной популяции заметно выше, чем в среднем. Именно эти люди являются основными драйверами первой волны. Внутри группы добросовестных сидельцев Reff намного ниже. В результате в группах риска будет быстро достигнут коллективный иммунитет — локально! — и вирус перестанет распространяться среди их представителей. И даже если формальный порог коллективного иммунитета в кластере преодолен не будет, по мере роста числа переболевших вирусу будет все сложнее находить новых хозяев.
Если гетерогенность высока и, главное, сохраняется длительное время, а группы риска достаточно массовы по отношению к общей популяции, то, когда государства снимут ограничения, стремительного роста новых случаев может и не произойти, так как топливо эпидемии выгорело. То есть глобальной второй волны не будет (хотя вялотекущие заражения могут продолжаться), притом что с точки зрения классических эпидемиологических теорий переболевших недостаточно для формирования коллективного иммунитета (по классике, для его формирования при COVID-19 необходимо, чтобы иммунная защита была примерно у 70 % населения). В итоге эпидемия затухнет раньше, а общее число заболевших (и умерших) окажется заметно ниже, чем в случае, если гетерогенность мала и все люди рискуют заразиться примерно одинаково.
Гетерогенность, очевидно, выше в больших городах, где много различных групп риска, представители которых к тому же живут и работают в куда более тесном контакте друг с другом. При этом крупные города работают как хабы, откуда вирус расползается по другим частям страны и в другие государства. И более быстрое, по сравнению с классическими моделями, затухание эпидемии в них может затормозить общее распространение вируса (впрочем, если вирус занесут в другие локации до выгорания главного очага и он успеет там как следует освоиться, гетерогенность не поможет).
С другой стороны, гетерогенность, особенно в условиях локдауна, нестабильна во времени — и тогда государства, где в первую волну все было хорошо, могут вдруг столкнуться со второй экспонентой. Так может произойти, например, если весной страна быстро ввела жесткий карантин и большинство граждан его соблюдали, а потом все ограничения были резко сняты. Те, кто сидел дома и ни с кем не встречался, начнут это делать — и у нас возникнут новые цепочки заражения, так как все участники встреч неиммунны, а вирус не истреблен. К сожалению, именно так и случилось: во время летней передышки вирус «по-тихому» расползся по популяции, и осенью вспышки начали возникать повсюду. В странах с явно выраженными и постоянными группами риска вероятность, что вы встретитесь с тем, кто уже переболел и не может подхватить и передать вирус дальше, намного выше{64}.
Практически с самого начала эпидемии ученых — и не только их — волновал вопрос, как долго у переболевших COVID-19 держится иммунитет, предохраняющий от повторного заражения. Спектр мнений простирался от «дай бог, если несколько месяцев» до «скорее всего, много лет». Так как предсказать длительность иммунной защиты, исходя из структуры вируса, нельзя, специалисты пытаются предвидеть будущее, сравнивая патоген с его родственниками. Оптимисты исходили из того, что люди, перенесшие атипичную пневмонию, вызываемую намного более убийственным «кузеном» нынешнего коронавируса SARS, никогда не заболевали повторно, а антитела обнаруживались в их крови даже спустя 12 лет после выздоровления