Вкус Солнца. Маленькие чудеса необъятной Вселенной — страница 2 из 14

Движение планет

В маленьком, но необъятном кармашке Вселенной — нашей Солнечной системе — самым большим объектом является Солнце. Оно примерно в тысячу раз тяжелее, чем самая большая планета — Юпитер. Мы кружимся вокруг этой горящей звезды благодаря тем же силам, что заставляют Луну вращаться вокруг нас: гравитации, скорости и несомненной магии (см. «Почему Луна не падает»).

Почти все в нашей Солнечной системе вращается вокруг своей оси в том же направлении, что и Солнце, совершая «проградное» вращение. Но некоторые объекты, например планеты Венера и Уран, ведут себя не как все. Венера вращается в противоположном (или «ретроградном») направлении, совершая один оборот вокруг своей оси каждые 243 земных дня. Уран вращается еще более своеобразно: он склоняется вбок практически под прямым углом и, похоже, не до конца понимает, что делает. Но почти все остальные вращаются вместе с самого начала. Галактика Млечный Путь, в которой находится наша Солнечная система, была образована вращающимся сгустком газа и пыли, и поскольку у нее пока не было веских причин для остановки, мы по-прежнему вращаемся.

«Спутник» — это термин, которым называют что-то уже существующее, например любую луну или Землю (по отношению к Солнцу), либо что-то, созданное человеком, например Международную космическую станцию. Если орбита объекта представляет собой правильный эллипс, то это почти наверняка спутник. И хотя технически это возможно, орбиты почти никогда не бывают идеально круглыми: как бы малы они ни были, всегда найдется отклонение от идеального маршрута. В случае земной орбиты эллипс сжат совсем немного. В той точке орбиты, где Земля подходит ближе всего к Солнцу, расстояние до светила составляет 147 миллионов километров, а где дальше всего — 152 (на диаграммах или рисунках Солнечной системы часто изображены обманчиво вытянутые эллиптические пути).



Нам стоит порадоваться, что орбиты не являются совершенно круглыми, ведь мы можем использовать для их описания слова, от которых у человека бегут мурашки по спине, например «перигелий» (когда планета находится в своей самой близкой точке относительно Солнца) и «афелий» (в самой удаленной). Эти легкие несовершенства орбит существуют главным образом потому, что, хотя притяжение Солнца огромно, его недостаточно, чтобы постоянно удерживать объекты рядом: чем дальше от Солнца движется планета, тем сильнее она замедляется, пока не достигнет своего афелия, где она начинает «опадать» и набирать скорость тем сильнее, чем ближе она к Солнцу.

Хотя кажется, что более мелкие объекты, например Земля, оборачиваются вокруг крупных неподвижных объектов, таких как Солнце, на самом деле все они вращаются вокруг объединенного центра массы — барицентра. Часто он расположен так близко к центру самого большого объекта, что этот объект кажется статичным, но на самом деле барицентр перемещается в зависимости от того, в каких точках своих траекторий находятся планеты. И хотя барицентр влияет на каждую частичку пыли в нашей Солнечной системе, неудивительно, что мы считаем Солнце центром всего сущего: если взвесить Солнечную систему, на долю Солнца выпадут 99,87% общей массы, а значит, и довольно выигрышная позиция, когда речь идет о гравитационной игре.

Пока мы не поймем точно (или даже смутно), как и почему работают небесные тела в нашей Солнечной системе, есть соблазн воспринимать их танец как должное. Но как только это понимание пришло, от него уже не избавиться. Каждый из наших скромных соседей при слабом свете кружится в медленном вальсе, который длится долгие дни и ночи, — не останавливаясь передохнуть, не слыша аплодисментов, но понимая, что движение должно продолжаться.

Что такое тепло


Слово «тепло» на самом деле относится к тепловой энергии — виду энергии, которая возникает в результате движения частиц, атомов, ионов и молекул, образующих газы, жидкости и твердые вещества воспринимаемого нами мира. Оконная рама, айсберг, ваш стакан воды, будь он наполовину пуст или полон, — абсолютно все содержит тепловую энергию.

Частицы похожи на людей, оказавшихся в толпе: они постоянно соприкасаются друг с другом, борясь за пространство, двигая локтем тут и эффектно падая там. Именно эти постоянные столкновения составляют основу «кинетической теории», которая возникла в конце XIX века благодаря изысканиям небольшой группы в меру гениальных физиков.

Если температура объекта падает, кинетическая энергия его частиц сокращается. И наоборот, с повышением температуры увеличивается кинетическая энергия. Нагревание и охлаждение всех объектов — это на самом деле просто передача тепла, и поэтому температура всего лишь индикатор способности одного предмета передавать тепло другому: от меня к вам, от кофе к ложке, отсюда туда.

Причину, по которой тепло переходит от горячих объектов к холодным, а не наоборот, кратко объяснил австрийский ученый Людвиг Больцман, опубликовавший по этой теме серию работ в 1870-х годах. Как ни странно, это всего лишь вопрос вероятности, элементарного шанса. Больцман осознал, что изменения температуры происходят не вследствие некоего абсолютного и непреклонного закона, а потому, что статистически более вероятно, что быстро движущиеся атомы горячего вещества столкнутся с более медленными, более холодными атомами холодного вещества. Когда происходит достаточное количество столкновений, тепловая энергия распределяется равномернее. По мере того как это происходит, температуры двух соприкасающихся объектов начинают выравниваться, пока не будет достигнуто состояние теплового равновесия, при котором температуры одинаковы, а обмен энергии прекращается.

Тепло — явление решительно нерешительное. Обычно оно не остается там, где вы его оставили: повернитесь к нему спиной всего на пять минут, и вы обнаружите, что оно уже куда-то переместилось.

Ужасно прояснительно

Попросту говоря, свет можно назвать способом передачи энергии в пространстве и по всей Вселенной. Но когда мы называем словом «свет» то, чем можно восхищаться, в чем можно сидеть и что может литься, мы имеем в виду лишь одну часть большого спектра — видимую, или оптическую. Однако наши глаза видят не всё.

Видимый свет находится в середине электромагнитного спектра. Этот спектр включает в себя излучение всех видов: с длинными волнами и низкими частотами (как радиоволны) или с короткими волнами и высокими частотами (как рентгеновские лучи). Все это излучение движется со скоростью света, равной 299 792 458 метров в секунду, причем таким образом, что его нельзя точно определить как частицу или волну. Чтобы обойти этот небольшой, но упрямый конфликт определений, физики используют термин «корпускулярно-волновой дуализм».

Свет возникает при разных физических процессах, например когда возбужденные атомы переходят из более высокого энергетического состояния в более низкое или, наоборот, из более низкого состояния в более высокое. При этом они получают или теряют энергию, и эта энергия излучается в виде фотона. Общий термин для создания света путем возбуждения атомов таким способом — «люминесценция» (это, помимо всего прочего, еще и очень красивое слово).

Свет ведет себя предсказуемо, поэтому мы можем формировать его и манипулировать им, использовать его для процессов, которые кажутся чистой магией. Свет — и неважно, исходит он от Солнца или другого подходящего источника, — отражается от окружающих нас предметов (людей, зданий, птиц в полете) и позволяет нам видеть форму и историю, которую мы позже сможем воспроизвести с помощью шокирующей технологии Technicolor.



Именно такое поведение света можно классифицировать как зеркальное или диффузное отражение. В первом, зеркальном, случае свет отражается от объекта четко определенным образом, как от зеркала, стекла или гладкой поверхности воды в штиль. Однако большинство отражений являются диффузными, потому что почти все в жизни нерегулярно и не поддается прогнозу, и когда свет попадает на такие предметы, он рассеивается.

Свет преломляется, когда проходит через определенные предметы, и этот «изгиб» света особенно полезен для тех из нас, кому приходится носить очки: линзы, через которые мы смотрим, преломляют свет.

А еще свет демонстрирует поведение, называемое дифракцией и интерференцией. Дифракция — это когда свет изгибается вокруг препятствий или проходит через зазоры: если прикрыть глаза в темноте и сквозь щелочки разглядывать, как уличные фонари превращают свет в причудливые длинные полосы и ловкие, усеченные движения, вы увидите пример дифракции. Интерференция — это встреча двух световых волн: они либо прекрасно поладят и будут взаимно компенсировать друг друга, либо не достигнут согласия и будут вместе расти и меняться. Непредсказуемая цветная поверхность мыльного пузыря — это пример интерференции — явления, которое может заставить нас взглянуть на процесс мытья посуды совершенно по-новому.

Могущественное Солнце все время излучает огромное количество энергии. И хотя лишь малая часть ее достигает Земли, этого более чем достаточно, чтобы освещать наши дни, даже с вездесущей задержкой: свет, который мы сейчас видим, принадлежал Солнцу восемь минут назад. Но такое космическое отставание не делает закат менее прекрасным или менее вечным. Возможно, мы смотрим на Солнце, которого больше нет, но с ним все равно лучше, чем без него.

Без Солнца и, как следствие, солнечного света мир несильно отличался бы от нынешнего, но мы просто не смогли бы ничего увидеть.

Атомы — произведения искусства


Возможно, нам стоит развесить портреты атомов в больших музеях с кондиционерами и белыми стенами и всматриваться в них в тихом изумлении. Мы будем ходить по этим галереям атомов и указывать: «Посмотрите! Немыслимо, что благодаря этим крошечным, невзрачным штучкам существует все вокруг».

В начале 1960-х аномально гениальный американский физик Ричард Фейнман в ходе одной из лекций сказал так: «Если в некоем катаклизме будут утрачены все научные знания и мы сможем передать следующему поколению существ лишь одно предложение, какое утверждение будет соде