Властелин ДНК. Как гены меняют нашу жизнь, а наша жизнь – гены — страница 15 из 42

С человеческими костями происходило бы так же. Но наши кости постоянно регенерируют, ведь у нас есть специальные гены, кодирующие все нужные белки. Например, коллаген, который задает структуру кости.

Производство коллагена зависит от ДНК, и он синтезируется в соответствии с потребностями, диктуемыми условиями нашей жизни. В отличие от «Давида» Микеланджело, наши лодыжки восстанавливаются сами, потому что в ответ на нагрузку меняется экспрессия генов и производится больше коллагена.

У человека более двух десятков форм коллагена. И есть он не только в костях. Коллаген можно найти почти везде: в трахее, в зубах и даже в волосах. Из 5 основных типов коллагена самый распространенный – коллаген первого типа. Он составляет более 90 % всего коллагена в организме человека. Тот же тип коллагена есть в стенках артерий, это придает им достаточную эластичность, чтобы выдерживать напор крови каждый раз, когда желудочек сердца сокращается.

Тем не менее, если коллаген потерял свою упругость, сильнее всего это заметно на лице, где он задает структуру кожи. Именно поэтому у многих коллаген ассоциируется с препаратом, который вкалывают себе в кожу щек дамы, стремящиеся выглядеть моложе.

Впрочем, можем начать рассказ и с морщин. На примере человеческих лиц наглядно видна роль коллагена как структурного белка, поддерживающего форму. Никто бы ведь не использовал его, чтобы сделать щеки гладкими, а губы полными, если бы это не работало, не так ли?

Само слово «коллаген» происходит от древнегреческого «колла» – клей. Когда клей нельзя было просто купить в магазине, люди использовали разные ноу-хау для скрепления деталей. Клей делали, вываривая животные кожи и жилы, содержащие много коллагена, который и давал клею связывающую способность. (В некоторых языках даже говорят «пустить на клей» вместо «пустить на мыло».)

Кетгут, из которого делают струны музыкальных инструментов, тоже в основном состоит из коллагена. Кетгут делают из кишок коз, овец и другого скота. Раньше из него же делали струны для теннисных ракеток, и на одну ракетку уходил материал от около трех коров.

Кетгут очень хорош своей упругостью благородя коллагену серозных оболочек кишечников животных. Чем более материал упругий, тем с большей силой его можно растягивать и деформировать. И чем больше упругость материала, тем менее он хрупкий.

Именно поэтому некоторая еда так затейливо жуется. Если вы любитель колбасок и сосисок, особенно таких, которые жарят на гриле или на мангале, вам должно быть интересно знать, что коллаген чаще всего и удерживает вместе кусочки мяса.

А еще, как вам расскажет любой веган, структура желе, суфле и мармелада создается с помощью желатина, который тоже делают из коллагена. Всего в мире за год производят более 350 млн кг желатина. И этот желатин становится неотъемлемой частью разных аспектов нашей жизни. Желатин есть в мороженом, капсульной оболочке витаминов и иногда даже в яблочном соке.

Коллаген определяет эластичность разных материалов. И в струне теннисной ракетки, и в упругих щеках молодых юношей и девушек, и даже в мишках из жевательного мармелада – везде упругость создается благодаря коллагену.

Пожалуй, лучший пример того, как гибкость становится силой, – арапайма. Эта двухметровая пресноводная рыба – одно из немногих существ на Земле, без всякого страха живущее бок о бок с пираньями. И все благородя тому, что у арапаймы в генах есть программа создания чешуи с особым коллагеновым каркасом, который прогибается, но не ломается, если воздействовать на нее острым предметом. Исследователи из Каролинского университета в Сан-Диего даже используют чешую арапаймы, рыбы, которая остается, не эволюционируя, неизменной уже 13 млн лет{54}, как модель для создания гибкой керамики. Такую керамику можно применять в изготовлении бронежилетов, а сама эта история еще раз показывает, как многому мы можем научится у природы, решая наши повседневные проблемы.{55}


Вы спросите: какое это все имеет отношение к генетике? Но ведь именно благодаря наследственной гибкости человеческого генома наши с вами кости так хорошо приспособлены к тяготам и неожиданным переменам в жизни. И как мы прекрасно видим на примере Грейс, нарушить сложный баланс довольно легко.

На самом-то деле достаточно всего одной буквы.

Геном человека состоит из миллиардов нуклеотидов – аденозина, тимина, цитозина и гуанина. Для записи эти нуклеотиды сокращают до одной буквы: А, Т, Ц и Г соответственно. И все эти буквы идут в строго определенном порядке.

Ген COL1A1{56} кодирует коллаген, от которого столь многое зависит в человеческом теле. В норме один из кусочков этого гена выглядит так:


ГАА-ТТТД-ТТДТ-ГГТ


Но иногда, в результате случайной мутации, одна из букв меняется и выходит:


ГАА-ТТТД-ТТДТ-ТГТ


И этого небольшого изменения достаточно, чтобы коллаген начал синтезироваться совсем иначе. Всего одна замена, и вместо крепких и гибких костей выходят кости, жесткие, как мрамор, и хрупкие, как песчаник.

Почему достаточно всего одной буквы, чтобы произошли такие разительные перемены? Представьте на минуту, что вы слушаете знаменитую «К Элизе» Бетховена. Пианист начинает играть как обычно, но вдруг ошибается на десятой ноте. Ошибается он не сильно, всего на одну клавишу. Но вы ведь все равно заметите, не так ли? Испортит ли эта ошибка ваше впечатление? А если бы вдруг игра шла под запись, нельзя же бы было просто проигнорировать промашку.

Бетховен был гением. Его произведения невероятно сложны. Но по сравнению с вашим геномом даже величайшие из шедевров Бетховена не сложнее песенки «В лесу родилась елочка».

Генетический код подобен сложнейшему танцу из многих миллиардов шагов. И достаточно одному шагу закончиться не совсем на своем месте, чтобы изменились последующие, – весь танец становится немного иным.

И все мы буквально в одном шаге-буковке от Грейс. Но, как вы уже знаете, это не значит, что мы ничего тут не можем поделать. Ведь даже всего лишь встав с дивана, вы не просто перемещаете свое тело в пространстве. И дальше я подробно объясню, как это работает.


Все, что мы не используем, мы теряем. И притом быстро.

Успешный бизнес использует стратегию «точно в срок», чтобы соотнести спрос и предложение. А наш вид в ходе эволюции научился генетически регулировать все так, чтобы минимизировать затраты организма и не делать ненужных запасов. И, наоборот, быстро производить все, что вдруг стало необходимо.

Это, вероятно, одна из причин, почему пожилые люди, страдающие ожирением, куда реже худых сверстников ломают кости. Все как у средневековых лучников. Избыточный вес и нагрузка, которую он дает на кости, подстегивает цикл совместной работы остеокластов и остеобластов. А в результате кости становятся крепче.

У спортсменов, занимающихся плаванием, и соответственно получающих нагрузку в условиях сниженной гравитации, шейка бедра минерализована гораздо меньше, чем у тяжелоатлетов, поднимающих большие грузы.{57} Скорее всего, это так, потому что пловцы, хотя и получают невероятно полезную сердечно-сосудистую нагрузку, куда меньше нагружают свой скелет, чем бегуны, борцы и прочие «сухопутные» спортсмены. То же самое мы видим каждый раз, когда космонавты возвращаются после долгого пребывания на Международной космической станции. В июле 2012 года посадочная капсула «Союза» приземлилась в южном Казахстане, вернув космонавтов из шестимесячного пребывания в космосе. На борту находились американский астронавт Дон Петтит, россиянин Олег Кононенко и датчанин Андре Кёйперс. Чтобы сделать фотографии для прессы, всех троих пришлось аккуратно посадить в специальные кресла{58}. За 193 дня, проведенные в невесомости, состояние их скелета изменилось. В результате кости стали хрупкими и неспособными поддерживать собственный вес организма в земных условиях. В этом отношении астронавты не так уж сильно отличаются от пожилых людей, страдающих остеопорозом. Их даже лечат похожим образом. Бисфосфонаты, например золедронат или алендронат, заставляют остеокласты самоуничтожиться вместо того, чтобы разрушать наши кости, поэтому такие препараты используются для лечения остеопороза. И эти же лекарства могут помочь астронавтам и людям, страдающим несовершенным остеогенезом, поддерживать свои кости в должной форме{59}. Сейчас одна частная компания уже ищет добровольцев для первого путешествия на Марс. Полет продлится минимум 17 месяцев в условиях полной невесомости. И для этой миссии такие лекарства будут незаменимы.

Однако не все так просто, как хотелось бы. Люди, принимающие бисфосфонаты, реже ломают шейку бедра в пожилом возрасте. Но при этом у них чаще бывают переломы диафиза бедренной кости.

Почему? Потому что препараты работают даже слишком хорошо. Процесс перестройки кости полностью останавливается, и в результате повышается риск некоторых типов переломов. Совсем как с лодыжками «Давида».


Согласитесь – это поразительно, сколь невероятный спектр последствий дают самые незначительные изменения нашего генетического кода или его экспрессии. Изменяется всего одна буковка из нескольких миллиардов, и кости человека начинают ломаться от малейшей нагрузки. Мизерное изменение всего в одном гене может кардинально поменять всю нашу жизнь.

И дело не только в унаследованных плохих генах. Если слишком много лежать на диване, не тренироваться, неправильно питаться, оказываться в условиях низкой гравитации или просто постареть, есть шанс получить все те же серьезные проблемы со скелетом. В то же время список известных решений этой проблемы постоянно расширяется. Лекарственные препараты, упражнения с грузом и иногда вибротерапия. Мы вовсе не заложники своих костей! Не важно, в чем проблема – в генах, в образе жизни или даже в том и другом. Существует масса способов как предотвратить, так и вылечить нарушения, которые могут вызывать повышенную ломкость костей.