Внешняя отделка загородного дома и дачи. Сайдинг, камень, штукатурка — страница 41 из 42

При испарении воды тесто загустевает и переходит в камневидное состояние. Главным недостатком извести является медленное твердение. В зависимости от количества взятой для гашения воды получают различные модификации гидратной извести:

–пушонку с массовой долей воды 50–70% от массы извести, т.е. вколичестве, необходимом для протекания реакции гашения;

–известковое тесто с массовой долей воды 300–400% от массы извести (т.е. в5–6 раз больше теоретически необходимого для гашения);

–известковое молоко с массовой долей воды 500–700% от массы извести (т.е. в8–10 раз больше теоретически необходимого для гашения).

Негашеную порошкообразную известь(молотую кипелку) получают из комовой. Для этого ее измельчают с введением в нее активных добавок – шлаков, золы в количестве 10–20%. При затворении водой порошкообразная известь ведет себя подобно гипсовым вяжущим: сначала образует пластичное тесто, а через 20–40мин схватывается. Это происходит из-за того, что часть воды затворения, образующая тесто, расходуется на гашение извести. При этом известковое тесто густеет и теряет пластичность. Благодаря меньшему количеству свободной воды материалы на основе порошковой извести менее пористые и более прочные.

Гидратная известь(пушонка)– белый тончайший порошок, получаемый при гашении извести небольшим количеством воды (немного выше теоретически необходимого). В процессе гашения гидратная известь увеличивается в объеме в 2–2,5 раза, и куски комовой извести рассыпаются, превращаясь в тонкий порошок. Очень большая удельная поверхность частиц Ca (OН) 2и их способность хорошо удерживать влагу обусловливают большую пластичность известкового теста.

Механизм твердения извести. В процессе твердения происходит усадка, которая может вызвать растрескивание, особенно при оштукатуривании на жестком основании, поэтому в состав извести всегда входят заполнители (песок, опилки) или другие вяжущие, например цемент и т.п.

Известковое тесто, если оно защищено от высыхания, может неограниченно долго сохранять пластичность. Затвердевшее известковое тесто при увлажнении вновь переходит в пластичное состояние. Однако при длительном (десятилетия) твердении известь приобретает высокую прочность и относительную водостойкость.

При длительном контакте извести с кварцевым песком в присутствии влаги образуются гидросиликаты кальция, повышающие прочность и водостойкость бетонов и кирпичной кладки на основе извести. Получаемая при этом известь называется гидравлической.

Так ее называют потому, что в воде (в отличие от воздушной) она способна дополнительно набирать прочность. Предел прочности гидравлической извести аналогичен воздушной, однако резко возрастает ее долговечность как в сухих, так и во влажных условиях. Воздушную известь применяют для приготовления кладочных и штукатурных растворов, при производстве силикатного кирпича, ячеистых блоков, силикатобетонных изделий, для получения смешанных вяжущих (известково-шлаковых, известково-зольных) и для производства красок.

Гидравлические вяжущие

Гидравлические известьсодержащие вяжущие

Известь имеет низкую водостойкость. Для устранения этого недостатка к извести стали добавлять вулканический пепел. Впервые это произошло еще в Древнем Риме. В результате этого смесь отвердевала на воздухе в течение 7–14 дней, при этом твердость и прочность гипсового камня усиливалась во влажных условиях. Так было получено первое гидравлическое вяжущее. Добавки из вулканических пород (пепла, туфа и т.п.) впоследствии получили название «гидравлические» или «пуццолановые» (по названию местечка у подножия Везувия, где они добывались). Римские постройки (мосты, акведуки, бани-термы) на таких смешанных вяжущих сохранились до наших дней.

В Древней Руси проблема придания извести водостойкости была решена введением в качестве гидравлической добавки молотого кирпича.

Механизм твердения таких вяжущих, как уже было ранее описано для случая гидравлической извести, заключается в образовании из смеси извести, активных кремнезема и глинозема (пепла, молотого кирпича) и воды водонерастворимых гидро-алюмосиликатов кальция.

Тот же самый эффект можно достичь введением 6–20% глины при обжиге известняков. Современные известьсодержащие вяжущие гидравлического твердения включают в себя смешанные вяжущие и строительную гидравлическую известь.

Смешанные вяжущие в зависимости от состава делятся на:

–известково-пуццолановые, получаемые при совместном измельчении извести (10–30%) с гидравлической добавкой активного кремнезема (пепла, пемзы и др. (70–85%)) и гипса (до 5%);

–известково-шлаковые. В этом случае добавкой служат доменный гранулированный шлак. Такие смешанные вяжущие применяют при приготовлении растворов для кладки подземных частей зданий и бетонов, предел прочности при сжатии не превышает 20 МПа (200кг/см 2).

Состав строительной гидравлической извести: продукты обжига мергелистых известняков (содержание глины 8–20%), свободные оксиды кальция и магния 50–60% и низкоосновные силикаты и алюминаты кальция, придающие извести гидравлические свойства. Предел прочности при сжатии затвердевшей гидравлической извести – 2–5 МПа, поэтому ее применяют для низкомарочных растворов и бетонов.


Портландцемент

Нужно сказать, что гидравлическая известь обладает рядом недостатков, такими как:

–необходимость твердения на воздухе первые 7–14 суток;

–низкая прочность;

–низкая морозо– и воздухостойкость.

Поэтому велись поиски более совершенного вяжущего вещества. Практически одновременно (1824–1825гг.) независимо друг от друга Егор Челиев в России и Джозеф Аспдин в Англии (г. Портленд) путем высокотемпературного (1500°C) обжига до спекания смеси известняков и глины получили вяжущее, обладающее большой водостойкостью и прочностью.

Портландцемент является гидравлическим вяжущим, которое получается тонким измельчением портландцементного клинкера и небольшого количества гипса (1,5–3%), используемого для отбелки и замедления (регулирования) сроков схватывания. Цементы изготавливают из природного мергеля осадочной горной породы (из алита, белита, алюмоферрита и др.), имеющего определенный химический состав, или смеси известняка и глины.

Не только состав клинкера, но в особенности тонкость помола определяют основные свойства цемента, связанные с особенностью физико-химического механизма твердения.

Промышленность выпускает портландцемент четырех марок: 400, 500, 550 и 600 (число соответствует округленной в сторону уменьшения средней прочности образцов при сжатии, выраженной в кгс/см 2).

Процесс схватывания и твердения портландцемента можно рассматривать как следствие процессов структурообразования, развивающихся в системе «цемент – вода», в результате гидратации клинкерных минералов и участия образующихся гидратных фаз в формировании прочного гелекристаллического конгломерата – цементного камня.

Постепенно пластичное цементное тесто теряет свою подвижность, загустевает и уплотняется. Начало этого периода (схватывания) начинается через 1–1,5ч, а конец – через 4–10ч. Затем наступает второй этап твердения с образованием цементного камня заданной прочности. Особенностью цемента является низкая скорость набора прочности. Однако в благоприятных условиях прочность изделия медленно увеличивается и превосходит заявленную марочную. Причиной этого явления служат следующие параметры и процессы:

–размер зерен клинкера. Из-за низкой растворимости гидратов на поверхности зерен образуется корочка, затрудняющая проникновение воды к сухому клинкеру и прекращающая процессы массообмена в объеме цементного сростка. Непрореагировавшие частицы клинкера (до 40%) образуют рыхлую структуру, которая и составляет запас прироста прочности. Поэтому чем более тонко помолот цемент, тем большая его доля прогидратируется и тем выше будет марочная прочность через 28 суток;

–количество воды для затворения. Обычно воды добавляют столько, чтобы получить вязкое и пластичное цементное тесто, которое хорошо укладывается в форму и обладает свойством легко разжижаться при механическом воздействии, а после снятия такого воздействия переходить в вязкопластичное состояние. Это достигается подбором правильного соотношения заполнителей, связующих и специальных добавок. Однако для протекания процессов гидратации полностью требуется лишь 22% воды затворения, остальная вода (40% от массы цемента) расходуется на смачиваемость частичек клинкера и увеличение подвижности и удобоукладываемости цементного теста. Избыток химически не связанной воды создает в затвердевшем цементном камне систему пор и капилляров, что повышает пористость (до 50% по объему), снижает морозостойкость и прочность. Теоретический предел прочности цементного камня при сжатии составляет 240–340 МПа, а практически достигнуты величины 280–320 МПа.

Портландцемент, будучи гидравлическим вяжущим, при нахождении в воде твердеет, набирая все большую прочность. Однако если вода начинает фильтроваться (просачиваться) сквозь цементный камень, то возможно его разрушение в результате физической коррозии. Коррозия протекает тем интенсивней, чем выше капиллярная пористость цементного камня. Главной причиной коррозии (выщелачивания) является не прореагировавшая с силикатами часть (до 15%) извести – Ca (OН) 2. Гидроокись кальция заметно растворима в воде (около 2г/л), поэтому при фильтрации воды возможно ее вымывание на поверхность с появлением белесых выцветов.

Использовать чистые вяжущие материалы без заполнителей нецелесообразно, так как при твердении в них возникают внутренние растягивающие напряжения и образуются трещины. Для предотвращения этого явления в смеси вводят заполнители (пески, щебень, каменную крошку (муку) и т.п.), которые не только снижают абсолютные величины линейной усадки, но значительно удешевляют готовое изделие.

Разновидности портландцемента. Наряду с портландцементом отечественная цементная промышленность выпускает ряд его разновидностей, отличающихся особенностями технологии и строительно-техническими свойствами и применяющихся в отделочных работах: