Воля и самоконтроль. Как гены и мозг мешают нам бороться с соблазнами — страница 19 из 64

{11},{12},{13}.

Это неудивительно, ведь нейромедиаторы в буквальном смысле управляют работой "подведомственных" им отделов мозга. В ответ на разные стимулы, как внешние, так и внутренние, нейроны, отвечающие за производство нейромедиаторов, впрыскивают их в нужные зоны. Попав в место назначения, молекулы нейромедиаторов присоединяются к соответствующим рецепторам и активируют или, наоборот, тормозят клетки-мишени. Генетические изменения приводят к тому, что в какой-нибудь зоне мозга, а то и в нескольких, нейромедиатора оказывается очень мало. Или слишком много. Или не хватает рецепторов к нейромедиатору. А может, наоборот, наблюдается их перепроизводство. Если "неудачные" варианты генов кодируют ферменты, которые отвечают за утилизацию нейромедиаторов, то дофамин или другие вещества слишком быстро или чересчур медленно выводятся из игры. Все эти и многие другие нарушения проявляются в том, что мозг иначе реагирует на стимулы: например, чересчур возбуждается при взгляде на симпатичную девушку или никак не может сосредоточиться на подготовке к экзамену и вместо размышлений о дискриминантах и логарифмах все время отвлекается на "ВКонтакте".

Как мы видели в главе 3, сложности с силой воли могут быть результатом самых разных изменений в работе сразу нескольких отделов мозга. И в основе этих изменений могут лежать различные "неканонические" варианты множества генов. Окончательно во всем хитросплетении связей и влияний ученые разберутся еще не скоро — не факт, что это в принципе возможно. Но в некоторых случаях исследователи выяснили, как именно конкретные аллели заставляют нас вновь и вновь проявлять слабоволие. И ниже мы рассмотрим эти случаи.

Измененные белки могут "ломаться" множеством способов

Чаще всего измененные по сравнению с "классической" версией белки не радикально выходят из строя, а лишь работают немного иначе. Генных вариаций, кодирующих подобные модифицированные белки, в ДНК множество: если выбрать у вас десяток случайных генов и сравнить их с такими же генами десяти ваших знакомых, вполне вероятно, вы не найдете ни одного точного повтора. Разница будет небольшой — всего в несколько генетических "букв", так что структуры кодируемых белков все равно останутся очень похожими[22]. Если слегка модифицированный по сравнению с "базовым" вариантом белок окажется рецептором к нейромедиатору, то он, например, будет чуть хуже удерживать нужную молекулу. Иначе говоря, даже если дофамин или другое "целевое" вещество вырабатывается в нормальных количествах, из-за более низкого сродства рецептора (так называют его ослабленную хватку ученые) нейромедиатор будет слишком быстро отрываться и уплывать, не задерживаясь в "ловушке", и клетки не смогут поймать его. В итоге "обслуживаемые" такими рецепторами отделы мозга будут хронически недополучать дофаминовых сигналов, что выльется в различные отклонения в поведении.

Иногда изменения не влияют на структуру белка, зато проявляются уровнем ниже. Белки не синтезируются напрямую с последовательности ДНК: сначала с гена снимается РНК-копия, и уже на ее основе строится белок. И у носителей некоторых генных вариантов эта молекула-посредник оказывается нестабильной. В результате целевого белка — скажем, рецептора дофамина — образуется меньше, чем нужно{14}. Кроме того, часто в мозгу людей с "неклассическими" версиями генов дофаминовой системы, особенно если они несут их на обеих хромосомах, плотность рецепторов к этому нейромедиатору заметно меньше, чем у носителей "базовых" вариантов[23]. Все эти нарушения приводят к одинаковому итогу: различные зоны мозга оказываются на бездофаминовой диете.

Недостача нейромедиатора имеет долговременные последствия: постепенно обделенные им участки мозга "усыхают", а дофаминовые пути, которые в норме должны пролегать по этим отделам, исчезают. Например, у обладателей аллеля DRD2/ANKK1 A1 — наверное, самого изученного "неклассического" варианта генов дофаминовой системы — размер некоторых областей, задействованных в системе поощрения, заметно меньше, чем у носителей обычной версии{15}. Мозг с измененной структурой иначе реагирует на все стимулы, что приводит к радикальным отличиям в поведении. Пока ученые не знают всех механизмов, при помощи которых дофамин влияет на наши решения, и зачастую не могут проследить, какие именно реакции идут не так и где это происходит. И тем не менее неполадки в дофаминовой системе — верный диагностический признак того, что у человека будут проблемы с самоконтролем.

"Прыгающие" изменения

DRD2/ANKK1 A1 известен не только огромным количеством посвященных ему научных работ, авторы которых связали эту генетическую особенность, кажется, со всеми существующими расстройствами силы воли — от алкоголизма до склонности к нервному перееданию. У этого однонуклеотидного полиморфизма (так ученые называют отличия в последовательности ДНК размером в одну генетическую "букву") весьма поучительная история исследования. Когда ученые только обнаружили новый аллель, они были уверены, что он относится к гену дофаминового рецептора DRD2 — хотя однобуквенная замена и находилась на расстоянии 10 тысяч нуклеотидов от конца гена (это далеко). Специалисты полагали, что вариант A1 сидит в какой-то особой регуляторной области, которая влияет на работу гена DRD2 "дистанционно". Но более точное картирование, проведенное в 2004 году, показало, что "гуляющая" генетическая буква находится вовсе не в DRD2, а в соседнем гене ANKK1 {16}. Этот ген кодирует фермент под названием "анкирин-киназа-1" (полное название — "Домен, включающий анкирин-киназу и анкириновые повторы"). Ферменты семейства киназ активируют другие белки, навешивая на них особые химические метки.

Выходит, все ученые, которые очень убедительно описывали в статьях, как вариант A1 влияет на дофаминовую систему и через нее на силу воли, просто подгоняли результаты под красивую гипотезу? На счастье ученых (и заодно автора этой книги), похоже, все не так плохо. Метаанализы, т. е. глобальные статистические изыскания, в которых проверяется достоверность большого количества исследований по той или иной теме, показывают, что вариант A1 действительно связан с различными нарушениями самоконтроля{17}. Но как именно киназа ANKK1 вклинивается в работу дофаминовой системы, пока неизвестно.

Эта история замечательно иллюстрирует, что наука — не собрание незыблемых постулатов и непререкаемых догм. Не статичная неповоротливая сущность, а динамичный и непрерывно меняющийся процесс. Кроме того, "переезд" варианта A1 из одного гена в другой показывает, что ученые — как и все остальные люди — тоже подвержены влиянию стереотипов и любят искать под фонарем. Давно известно, что расстройства самоконтроля связаны с нарушениями в работе дофаминовой системы, поэтому, когда исследователи обнаружили неизвестный полиморфизм в окрестностях (пусть и весьма отдаленных) гена дофаминового рецептора, они, разумеется, отнесли новый вариант именно к гену DRD2. Наконец, третий вывод из этого научного детектива: не стоит слепо доверять выводам, сделанным на основе генетического тестирования. Всегда нужно иметь в виду, что новые работы могут если и не полностью перевернуть устоявшиеся представления (все же откровенная чушь не попадает в генетическое "меню", которое предлагают уважаемые компании), то по крайней мере здорово изменить их.

Если вовремя не разрушать дофамин, мозг приобретает гибкость, возможно, излишнюю

Несдержанность при столкновении с соблазнами и неумение контролировать свои порывы в течение длительного времени определяются не только тем, как синтезируется дофамин, но и тем, как он разрушается. Главный ответственный за уничтожение нейромедиатора в нашем мозгу — фермент под названием катехол-О-метилтрансфераза или сокращенно COMT. Он разрушает дофамин и различные его производные вроде адреналина и норадреналина (в организме оба эти вещества синтезируются из дофамина). COMT работает по всему мозгу, но особенно он важен в префронтальной коре. В этом регионе нет фермента DAT — транспортера, который убирает дофамин из щели между нейронами и возвращает обратно в клетки, которые выделили нейромедиатор. В итоге в ПФК COMT становится главным ответственным за своевременное очищение межнейронного пространства от "отработавшего" дофамина[24]. Если вовремя не убирать нейромедиатор, тонко настроенная система, которая регулирует его выброс, портится.

У людей встречаются два варианта фермента COMT: у одного на 158-м месте стоит аминокислота валин, а у другого — метионин. В гене, кодирующем COMT, у валинового варианта (он более древний) стоит гуанин, а у возникшего позже метионинового — аденин. Разница в одну аминокислоту сказывается на работе фермента драматически: метиониновая версия гораздо менее стабильна, она быстро выходит из строя, так что итоговая активность оказывается в два-три раза ниже, чем у валинового варианта[25]. Иными словами, у носителей этой версии гена COMT, особенно если она на обеих хромосомах, в префронтальной коре между нейронами всегда больше дофамина, чем у обладателей генов валиновой разновидности. Носители метионинового варианта легче переключаются с одной задачи на другую, но им сложнее сдерживать свои порывы, чем обладателям более активной валиновой версии. Зато мозг последних лучше подавляет побочные желания и способен дольше фиксироваться на одной задаче. Соответственно, люди с одной или двумя метиониновыми версиями более импульсивны, чем обладатели валиновой разновидности COMT. При этом есть данные, что в целом уровень исполнительных функций мозга у людей с постоянно высоким уровнем дофамина в межнейронном пространстве выше