рого, как предполагают, погибло большинство анаэробных клеток, действительно случился: это не подтверждается ни филогенетическими, ни геохимическими данными. Напротив, анаэробы процветали.
Еще важнее вот что. Существует убедительное свидетельство в пользу того, что промежуточные формы на самом деле не были обречены на вытеснение более сложными эукариотами. Доказательство простое: они до сих пор существуют. Мы уже встречались с ними. Это архезои – большая группа примитивных эукариот, которая когда-то ошибочно считалась “недостающим звеном”. Они не являются истинной промежуточной формой в эволюционном смысле, но в экологическом отношении они действительно в промежуточном положении – занимают ту самую нишу[13]. Эволюционная промежуточная форма – это, например, тиктаалик, рыба с ногами, или покрытый перьями крылатый динозавр археоптерикс. Экологическая промежуточная форма – это не настоящее звено, однако ее возникновение позволяет убедиться в том, что определенная экологическая ниша пригодна для жизни. Белка-летяга не является близким родственником других летающих позвоночных, например летучих мышей, тем более птиц, однако она демонстрирует, что планировать с дерева на дерево можно и без покрытых перьями крыльев. Значит, предположение, что механический полет мог начаться подобным образом, не будет пустой выдумкой. И в этом настоящая ценность архезоев: они – экологическая промежуточная форма, своим существованием подтверждающая, что такой образ жизни возможен.
К архезоям относят более тысячи видов. Эти организмы – эукариоты, которые приспособились к “промежуточной” нише путем упрощения, – а вовсе не бактерии, строение которых немного усложнилось. Позвольте это подчеркнуть. Данная ниша пригодна для жизни, и она многократно заселялась морфологически простыми клетками. Простые клетки не были вытеснены эукариотами. Напротив, они процветали, и именно потому, что пошли по пути упрощения. Статистически (при прочих равных условиях) вероятность захвата этой ниши только простыми эукариотами (а не сложными бактериями) в 1 тыс. случаях составляет 1 на 10300: соотношение, которое могло бы получиться в результате работы генератора бесконечной невероятности Зафода Билброкса. Даже если архезои 20 раз (возьмем самую скромную оценку) возникали независимо и всякий раз возникшая форма порождала множество дочерних видов, вероятность все же остается очень небольшой: один из миллиона. Или выпал тот самый единственный шанс, или же вмешалось что-то кроме статистической вероятности. Наиболее правдоподобное объяснение состоит в том, что в строении эукариот было нечто, способствующее освоению ими “промежуточной” ниши, – а строение бактерий, напротив, отличалось чем-либо таким, что мешало приобрести морфологическую сложность.
Эта идея не выглядит чересчур смелой. Она не противоречит ничему из того, что мы знаем. В этой главе я говорил лишь о бактериях, но существует два домена одноклеточных организмов без ядра, которые поэтому называют прокариотами (“доядерными”). Эти группы – бактерии и археи (не путать с архезоями). Я могу лишь извиниться за путаницу. Научная терминология иногда выглядит так, будто придумана специально для того, чтобы никто ничего не понял. Запомните: археи и бактерии – это прокариоты и не имеют ядра, а архезои – примитивные эукариоты, у которых имеется ядро. На самом деле архей до сих пор иногда называют архебактериями – “древними бактериями”, в противоположность эубактериям, “настоящим бактериям”, так что представителей обеих групп можно вполне законно называть бактериями. Для простоты я продолжу использовать термин “бактерии” для обозначения обеих этих групп, за исключением случаев, когда придется подчеркнуть важные различия двух доменов[14].
Указанные два домена – бактерии и археи – в высшей степени различны в отношении генетики и биохимии, однако морфологически почти не отличаются друг от друга. Организмы, принадлежащие к обеим группам – это маленькие простые клетки, не имеющие ядра и многих других эукариотических черт, характеризующих “сложную” жизнь. Ни одной из этих групп, несмотря на поразительное генетическое разнообразие и биохимическую пластичность, не удалось выработать сложную морфологию. Это обстоятельство можно расценивать так, будто существует некий внутренний физический запрет, не позволяющий прокариотам достичь сложности, а эукариоты его каким-либо образом обошли. В гл. 5 я покажу, что эта преграда была устранена в результате редчайшего события: единичного эндосимбиоза двух прокариот. А пока отметим, что некий запрет вынуждал оба домена прокариот (и бактерий, и архей) оставаться простыми в морфологическом отношении непостижимо долгие 4 млрд лет. Только эукариотам удалось открыть мир сложности, а вступили они в него в результате стремительного лавинообразного развития – монофилетической радиации. Она подразумевает, что эукариоты освободились от всех структурных ограничений, которые только могли им мешать. Судя по всему, это случилось лишь однажды: все эукариоты родственны друг другу[15].
Это и есть новый взгляд на историю развития жизни. Здесь она изложена очень кратко. Древняя Земля не слишком отличалась от нашей: она была покрыта водой, обладала умеренным климатом и атмосферой, состоящей главным образом из азота и углекислого газа. В то время в составе атмосферы было мало подходящих для органической химии газов, например водорода, метана и аммиака. Это исключает идею “первичного бульона”. Так или иначе, жизнь возникла настолько рано, насколько это вообще возможно. Бактерии на протяжении 2 млрд лет изменяли облик земного шара, преобразуя океаны, атмосферу и континенты. Они становились причиной климатических катастроф – Земля раз за разом покрывалась льдами, а затем оттаивала вновь. Они отравили мир, наполнив химически активным кислородом атмосферу и океаны. И все же за все это время ни бактерии, ни археи не превратились во что-либо иное – они упрямо сохраняли простоту своего строения и образа жизни. В эти бесконечные 4 млрд лет, полные перемен, происходивших и с условиями, и со средой, бактерии изменяли свои гены и биохимию, но никогда – свою форму. Они так и не дали начало более сложным формам жизни – кроме одного-единственного раза, – таким, которые мы надеемся найти на других планетах.
Единственный раз, здесь, на Земле, бактерии дали начало эукариотам. Нет ни палеонтологических, ни филогенетических данных, указывающих на то, что сложная жизнь возникала неоднократно и выжила лишь одна группа: эукариоты. Напротив, то, что эукариоты – монофилетическая группа, наводит на мысль, что их появление было продиктовано необходимостью избавиться от внутренних физических ограничений, которые никак не помогали в периоды экологических потрясений, например во время Великого кислородного события. В части III этой книги мы увидим, какими могли быть ограничения. А сейчас заметим, что любой заслуживающий внимания рассказ на эту тему должен содержать объяснение, почему сложная жизнь возникла лишь однажды. Наше объяснение достаточно убедительно для того, чтобы в него можно было поверить – но недостаточно убедительно для того, чтобы перестать задаваться вопросом, почему это не происходило многократно. Любая попытка объяснить причину уникального события упирается в счастливую случайность. Как мы можем подтвердить то или иное предположение? Само событие мы, конечно, не можем наблюдать непосредственно, но оно могло оставить следы. Как только оковы “бактериальности” были сброшены, эукариоты приобрели удивительную сложность и морфологическое многообразие. Путь наращивания сложности вовсе не был прямым и простым: эукариоты приобрели целый ряд черт (от полового размножения и старения до видообразования), ни одна из которых не встречалась у бактерий или архей. Все эти древнейшие эукариотические черты объединились в единственном и неповторимом общем предке. Мы не знаем переходных форм между морфологической простотой бактерий и чрезвычайной сложностью общего предка, никаких существ, которые могли бы заполнить эту пропасть. Это открывает перед нами захватывающие перспективы: главные вопросы биологии еще предстоит решить! Содержат ли эти черты нечто, что позволило бы понять, как они эволюционировали? Я думаю, да.
Эта загадка возвращает нас к вопросу, поставленному в начале главы. В какой степени, исходя из базовых принципов, можно предсказать свойства жизни и ход ее истории? Я предположил, что жизнь подчиняется таким ограничивающим факторам, которые непросто объяснить с точки зрения генетики, истории и экологии. Идею рассматривать жизнь исключительно в информационном ключе я не поддерживаю, так как этот взгляд не позволяет предсказать ни единого эпизода этой непостижимой истории. Почему жизнь зародилась так рано? Почему она на миллиарды лет застыла на одном уровне морфологической сложности? Почему изменения условий и среды столь мало повлияли на бактерий и архей? Почему сложная жизнь за 4 млрд лет появилась лишь однажды? Почему прокариоты вновь и вновь не порождают новые, более сложные клетки и организмы? Почему этого даже иногда не происходит? Почему свойственные эукариотам специфические черты, например половое размножение, наличие ядра и способность к фагоцитозу, не возникают у бактерий или архей? Почему эукариоты обладают всеми этими чертами?
Если жизнь сводится к информации, то эти вопросы – глубочайшие тайны. Я не верю, что на них можно найти ответ, опираясь исключительно на информацию. Возникновение причудливых особенностей жизни пришлось бы списать на случайность, дело рук беспечной и безжалостной Фортуны. Мы бы не имели возможности предсказывать свойства живого на других планетах. Все же вышло так, что ДНК, будто бы обещающая дать ответ на любой вопрос, заставила нас забыть о втором центральном принципе, который выдвинул Шредингер: жизнь сопротивляется энтропии. В своей книге “Что такое жизнь?” Шредингер заметил, что, если бы сочинял книгу для физиков, то должен был бы вместо термина “энтропия” использовать другой термин: “свободная энергия”.