Вопрос жизни. Энергия, эволюция и происхождение сложности — страница 21 из 71

[45].

Ясно, что это лишь намеки на будущую клетку: необходимое, но не достаточное. А сейчас сосредоточимся на очень важном моменте. Без интенсивного притока углерода и энергии, пропущенного через неорганические катализаторы, возникновение и развитие клеток невозможно. Я готов поспорить, что такая закономерность действует во всей Вселенной: учитывая потребность в углероде (см. предыдущую главу), термодинамика диктует необходимость непрерывного потока углерода и энергии через природные катализаторы. Строго говоря, это требование заставляет исключить почти все среды, которые в разное время предлагались на роль места зарождения жизни: теплые водоемы (к сожалению, Дарвин в их отношении был неправ), “первичный бульон”, пористые вулканические породы, побережья, другие планеты (в рамках идеи панспермии) – можете сами продолжить список. Но это требование не исключает гидротермальные источники. Напротив, они отлично ему соответствуют. Гидротермальные источники – как раз та разновидность диссипативных структур, которую мы ищем: работающие на непрерывном потоке и далекие от равновесия электрохимические реакторы.

Гидротермальные источники как потоковые реакторы

Большой призматический источник в Йеллоустонском национальном парке своей устрашающей оранжево-желто-зеленой окраской напоминает мне Око Саурона. Все дело в фотосинтетических пигментах бактерий, которые в качестве донора электронов пользуются выделяющимися из вулканических источников водородом и сероводородом. Хотя йеллоустонские бактерии-фотосинтетики почти ничего не могут рассказать о происхождении жизни, они дают представление о первобытной мощи вулканических источников. Если лишить растительности скалы вокруг источников, пейзаж стал бы напоминать место, где 4 млрд лет назад зародилась жизнь.

Правда, 4 млрд лет назад Земля была покрыта водой. Возможно, горячие источники имелись и на каких-нибудь крошечных вулканических островах, но в основном горячие источники находились глубоко под водой. Открытие подводных гидротермальных источников в 70-х годах XX века вызвало ажиотаж: не потому, что об их существовании никто не догадывался (их легко обнаружить по шлейфу теплой воды), а потому, что никто не представлял себе мощь “черных курильщиков” и не знал, что они выступают средоточием жизни на океанском дне. Оно представляет собой почти лишенную жизни пустыню. “Черные курильщики”, похожие на обвалившиеся дымоходы, непрерывно выбрасывающие клубы черного дыма, дали приют удивительным животным: гигантским червям, утратившим рот и анус, двустворчатым моллюскам с большую тарелку, безглазым креветкам. По плотности жизни “черные курильщики” сопоставимы с тропическими лесами. Открытие “черных курильщиков” привлекло биологов и океанографов, но особенно – ученых, занимавшихся проблемой происхождения жизни. Микробиолог Джон Баросс сразу оценил важность открытия. Он в большей степени, нежели остальные исследователи, сосредоточил внимание на необыкновенной силе и мощности неравновесных процессов, происходящих в гидротермальных источниках, скрытых от солнечного света километрами океанской воды.

Впрочем, “черные курильщики” не отрезаны от Солнца. Обитающие там животные существуют за счет симбиоза с бактериями, которые окисляют сероводород, выделяющийся из “курильщиков”. Именно сероводород является главной причиной неравновесного состояния в “черных курильщиках”: сероводород – восстановленное соединение, поэтому он реагирует с кислородом с выделением энергии. Вспомните механизм дыхания, описанный в предыдущей главе. Бактерии используют сероводород как донор электронов, кислород как акцептор электронов, а выделяющуюся энергию тратят на синтез АТФ. Но ведь кислород – побочный продукт оксигенного фотосинтеза, и до его появления на Земле кислорода быть не могло. Так что бурное развитие жизни вокруг “черных курильщиков” полностью, хотя и не непосредственно, зависит от солнечного света. Четыре миллиарда лет назад подводные гидротермальные источники выглядели совсем иначе.

Что останется, если убрать кислород? “Черные курильщики” возникают при прямом контакте морской воды с магмой в спрединговых зонах срединно-океанических хребтов или в других вулканически активных местах. Через океанское дно вода просачивается в вулканические камеры, которые залегают неглубоко под поверхностью дна. В них вода мгновенно нагревается до нескольких сотен градусов, насыщается растворенными сульфидами металлов и становится сильнокислой. Когда перегретая вода под давлением прорывается через дно, она резко охлаждается и растворенные в ней сульфиды железа, например пирит (“золото дураков”), сразу же кристаллизуются. Взвесь сульфидов железа образует тот самый черный “дым”. Четыре миллиарда лет назад “черные курильщики” были устроены почти так же – кроме того, что они были совершенно непригодными для жизни. Ведь жизнь целиком зависит от химического потенциала. Он обеспечивается наличием кислорода, а его тогда не было. Сероводород очень тяжело заставить реагировать с CO2 с образованием органики, особенно при высоких температурах. Но один революционер от науки, немецкий химик, патентный поверенный Гюнтер Вехтерсхойзер решил доказать, что на самом деле все не так, и весьма в этом преуспел[46]. С конца 80-х годов Вехтерсхойзер опубликовал ряд новаторских статей, в которых очень подробно описал путь восстановления CO2 до органических молекул на поверхности сульфидов железа. Этот процесс он назвал пиритным пуллингом. Вехтерсхойзер говорил о “железосерном мире”, в котором железосерные минералы (FeS) катализируют образование органических молекул. По своей структуре такие минералы представляют собой кристаллы, собранные из повторяющихся ячеек из ионов двухвалентного железа (Fe2+) и сульфид-ионов (S2–). Крошечные неорганические кластеры из ионов Fe2+ и S2–, известные как железосерные кластеры, до сих пор выполняют ключевые функции во многих ферментах, в том числе участвующих в дыхании. Структура железосерных кластеров идентична кристаллической структуре минералов сульфида железа (FeS), например макинавита и грейгита (рис. 8, 11). Такие минералы могли катализировать реакции на заре возникновения жизни. Но, несмотря на то, что железосерные минералы – прекрасные катализаторы, Вехтерсхойзер экспериментально доказал, что гипотеза пиритного пуллинга в своем первоначальном виде не работает. Только взяв более реакционноспособный монооксид углерода (CO), Вехтерсхойзеру удалось синтезировать органические молекулы. И тот факт, что неизвестны организмы, способные расти за счет пиритного пуллинга, подтверждает, что дело не в неудачных экспериментах: идея и в самом деле плоха.


Рис. 11. Железосерные минералы и железосерные кластеры.

Близкое сходство железосерных минералов и железосерных кластеров, входящих в состав современных ферментов (Russell and Martin 2004). В центре показана повторяющаяся кристаллическая структурная единица грейгита (эти единицы в совокупности образуют решетку). Справа и слева – железосерные кластеры в составе белков. Их структура напоминает структуры грейгита и сходных минералов, например макинавита. Закрашенные области отражают форму и размер названных белков. Изображенные белки, как правило, содержат несколько железосерных кластеров (с никелем или без него).


В жерлах “черных курильщиков” содержится и CO, но его концентрация ничтожно мала, так что органическую химию так не построить. (Концентрация CO в “черных курильщиках” в 1–1000 тыс. раз ниже, чем CO2.) Есть и другая проблема. Внутри “черных курильщиков” чрезвычайно горячо: температура воды в жерле достигает 250–400 °C, но на большой глубине она не кипит из-за высокого давления. При такой температуре CO2 – самое стабильное углеродное соединение. Это означает, что синтез органических веществ в этих условиях не может осуществляться: любая синтезированная органика будет быстро разрушена и снова превратится в CO2. Предположение, что органические реакции могут протекать на поверхности минералов, также сомнительно. Если органические молекулы будут оставаться связанными с поверхностью минералов, их образование в конце концов остановится. Если же молекулы будут диссоциировать, их сразу смоет в океан, и синтез органики в прямом смысле вылетит в трубу. “Черные курильщики” еще и очень недолговечны, период их существования исчисляется десятками лет – слишком мало для зарождения жизни. Хотя “черные курильщики” представляют собой неравновесные диссипативные структуры и с их помощью можно разрешить некоторые проблемы гипотезы “первичного бульона”, их нестабильность и жесткие условия препятствуют синтезу хрупких органических соединений, необходимых для развития жизни. Но все же “черные курильщики” сыграли в этом процессе очень важную роль: насытили воды древнего океана важными для катализа ионами металлов, например железа и никеля, выщелоченных из магмы.

Преимуществами этих ионов могли пользоваться подводные источники и другого типа – щелочные гидротермальные источники (рис. 12). На мой взгляд, эти источники позволяют решить все проблемы, которые возникали с происхождением жизни в “черных курильщиках”. Щелочные гидротермальные источники, в отличие от “черных курильщиков”, образуются не из-за вулканической активности (и поэтому выглядят не столь впечатляюще), но на роль потоковых электрохимических реакторов подходят гораздо лучше. То, что щелочные источники отвечают требованиям жизни, показал геохимик Майк Рассел, опубликовав в 1988 году короткую статью в журнале “Нейчур”. В 90-х годах он написал ряд теоретических работ. Впоследствии к нему присоединился Билл Мартин, который обогатил исследования горячих источников своими микробиологическими идеями, и вместе они обнаружили множество неожиданных параллелей между источниками и живыми клетками. Как и Вехтерсхойзер, Рассел и Мартин утверждают, что жизнь началась с реакций между простыми молекулами, например H