Вопрос жизни. Энергия, эволюция и происхождение сложности — страница 51 из 71

Так появился механизм, уничтожающий клетки с рассогласованными геномами. Выживают клетки, геномы которых работают слаженно. В ходе эволюции это привело к тому, что мы наблюдаем сейчас: к коадаптации митохондриальных и ядерных геномов, когда изменения в одном геноме компенсируются изменениями в другом. Как я упоминал, наличие двух полов увеличивает разнообразие женских гамет: большинство яйцеклеткок содержит клональные популяции митохондрий разного происхождения. Некоторые из этих митохондрий в присутствии генома оплодотворенной яйцеклетки будут работать лучше, другие – хуже. Те, что будут работать плохо, запустят апоптоз и погибнут вместе с клеткой. Хорошо функционирующие митохондрии, напротив, выживут.

У многоклеточных организмов выживание во многом определяется развитием. Оплодотворенная яйцеклетка (зигота) в ходе многих клеточных делений превращается в новую особь. Этот процесс требует очень точного контроля. Если в результате апоптоза какие-нибудь клетки непредвиденно гибнут, это может нарушить всю программу развития и привести к выкидышу, к остановке эмбрионального развития. Это не обязательно плохо. С точки зрения естественного отбора, лучше прервать развитие на ранней стадии и не тратить ресурсы, чем позволить плохо приспособленному организму развиться до конца. Ведь в последнем случае ядерные и митохондриальные гены будут плохо совместимы друг с другом, что может вызывать митохондриальные заболевания, нарушения жизнедеятельности и раннюю смерть. С другой стороны, раннее прекращение развития в том случае, если у эмбриона обнаруживаются рассогласования в работе митохондриального и ядерного геномов, закономерно приводит к снижению рождаемости. Если преобладающая часть эмбрионов оказывается не способна развиться до взрослого состояния, это может привести к бесплодию. На одной чаше весов оказывается приспособленность потомства, на второй – плодовитость. Эти затраты и прибыли определяют ход естественного отбора. Ясно, что нужен точный механизм, определяющий, какие рассогласования геномов должны запускать апоптоз, а с какими вполне можно жить.

Действительно ли это реализуется в природе? Да – известно несколько случаев. Впрочем, это может оказаться лишь вершиной айсберга. Пожалуй, самый показательный пример обнаружил Рон Бертон. Он дольше десяти лет исследовал митохондриально-ядерные несовместимости у морских веслоногих рачков Tigriopus californicus. Это животные длиной 1–2 мм, обитающие почти во всех влажных местах, в частности, на литорали острова Санта-Крус у побережья Калифорнии. Бертон скрещивал рачков из двух популяций, которые несколько тысячелетий были репродуктивно изолированы друг от друга, хотя их разделяет лишь несколько километров. Бертон и его коллеги отметили случаи так называемого гибридного разрушения, которое проявляется при скрещивании особей из разных популяций. Это очень любопытное явление. Гибриды первого поколения, то есть результат первого скрещивания между двумя популяциями, вполне жизнеспособны. Но если взять полученных гибридных самок и попытаться скрестить их с самцами исходной отцовской популяции, их потомки окажутся сильно ослаблены, в “плачевном” состоянии, по выражению Бертона. У потомков этого скрещивания наблюдался целый спектр изменений, и их средняя приспособленность была значительно ниже. Уровень синтеза АТФ у них сократился примерно на 40 %, и это привело к снижению выживаемости, плодовитости и сроков развития (в данном случае речь идет о сроках метаморфоза, которые зависят от размеров тела, а те, в свою очередь, от скорости роста).

Эта проблема объясняется несовместимостью митохондриальных и ядерных генов, что можно подтвердить, взяв полученных в эксперименте ослабленных самцов и скрестив их с самками из исходной материнской популяции. Потомки такого скрещивания обретают нормальную приспособленность. Но если поставить обратный эксперимент – скрестить ослабленных самок с самцами из исходной отцовской популяции, – потомство так и останется ослабленным, точнее, окажется еще слабее. Результаты этих экспериментов довольно легко понять. Митохондрии всегда наследуются от матери, и для их нормального функционирования необходимо, чтобы гены в ядре также были похожи на материнские. При скрещивании с самцами из генетически удаленной популяции материнские митохондрии начинают работать с ядерными генами, которые плохо с ними сочетаются. У гибридов первого поколения эта проблема не стоит столь остро, поскольку 50 % генов их ядра унаследованы от матери и нормально функционируют с материнскими митохондриями. У потомков от скрещивания гибридов первого поколения с самцами из исходной отцовской популяции, таким образом, 75 % ядерных генов оказывается несовместимыми с генами митохондрий, что проявляется в сильном снижении приспособленности. Скрещивание ослабленных самцов с самками из исходной материнской популяции дает потомков, у которых 62,5 % ядерных генов происходит из материнской популяции и совместимо с митохондриальными. Приспособленность потомков, таким образом, восстанавливается. Но обратное скрещивание дает противоположный эффект: 87,5 % ядерных генов у потомков оказываются неприспособленными к согласованной работе с митохондриями. Неудивительно, что такие особи на ладан дышат.

Что такое гибридное разрушение? Многие знакомы с явлением гетерозиса – увеличением приспособленности гибридов. Скрещивание неродственных линий выгодно: тогда организмы с меньшей вероятностью несут одинаковые мутации в одних и тех же генах. Наборы генов, полученные от отца и от матери, компенсируют друг друга, что повышает приспособленность. Но эффект гетерозиса встречается сравнительно редко. Гораздо чаще скрещивание между неродственными видами дает нежизнеспособное или бесплодное потомство. Это и есть гибридное разрушение. Репродуктивные барьеры между близкородственными видами далеко не такие жестки, как это преподносится в учебниках, и виды, которые в дикой природе обычно не проявляют интереса друг к другу, нередко успешно спариваются в неволе. Традиционное понимание видов как популяций, не способных при скрещивании давать способное к размножению потомство, в случае многих близкородственных организмов просто не работает. Тем не менее в процессе расхождения популяций возникают репродуктивные барьеры. Такие барьеры должны начать проявляться в скрещиваниях между популяциями особей одного вида, которые долгое время были репродуктивно изолированы друг от друга. В случае рачков, которых изучает Рон Бертон, гибридное разрушение целиком обусловлено несовместимостью митохондриальных и ядерных генов. Но, может быть, механизм гибридного разрушения распространен шире и сыграл роль в происхождении гораздо большего числа видов?

Я подозреваю, что дело обстоит именно так. Конечно, это лишь один из множества механизмов видообразования, но случаи “митонуклеарного” гибридного разрушения обнаружены у многих организмов: у мух, ос, у пшеницы, у дрожжей и даже у мышей. Этот механизм возникает из-за необходимости согласованной работы двух генов, что у эукариот неизбежно приводит к видообразованию. Впрочем, эти эффекты в разной степени выражены у разных организмов – по всей видимости, из-за разной скорости изменения митохондриальных генов. У веслоногих рачков скорость эволюции митохондриальных генов может быть в 50 раз выше, чем у генов ядра. А митохондриальные гены плодовой мушки (Drosophila) изменяются гораздо медленнее – примерно в два раза быстрее ядерных генов. Соответственно, эффект митонуклеарного разрушения гибридов у веслоногих рачков выражен гораздо сильнее, чем у плодовых мушек. Чем выше скорость изменения, тем больше появляется различий в нуклеотидной последовательности за заданный промежуток времени, и, следовательно, тем выше вероятность возникновения несовместимости митохондриальных и ядерных геномов при скрещивании особей из разных популяций.

Точные причины того, почему митохондриальные гены животных эволюционируют гораздо быстрее ядерных, неизвестны. Дуглас Уоллес, основоположник митохондриальной генетики, считает, что митохондрии – это авангард процесса адаптации. За счет быстрых изменений митохондриальных генов животные могут задолго до появления более медленных морфологических адаптаций приспосабливаться к изменению кормовой базы и климата. Эта идея мне нравится, хотя у нее пока слишком мало убедительных доказательств или опровержений. Но если Уоллес прав, то повышение приспособленности обусловлено непрерывным появлением новых вариантов митохондриального генома, на которые может воздействовать естественный отбор. Эти изменения не только служат начальным механизмом, облегчающим адаптацию к новым условиям, но и являются одними из предвестников видообразования. Это согласуется со старым, очень занятным биологическим правилом, которое сформулировал Дж. Б. С. Холдейн, один из отцов-основателей эволюционной биологии. Новая интерпретация этого правила предполагает, что митонуклеарная коадаптация может быть важна в процессах возникновения видов, а также играть большую роль для нашего здоровья.

Определение пола и правило Холдейна

Холдейн всегда питал слабость к ярким высказываниям. В 1922 году он выступил со следующим примечательным заявлением:

Если в потомстве животных, принадлежащих к двум разным видам, один пол отсутствует, встречается редко или стерилен, то этот пол гетерозиготен [гетерогаметен].

Проще сказать “…этот пол – мужской”, но тогда область применимости этого правила сузилась бы. У млекопитающих мужской пол гетерозиготен (гетерогаметен). Это означает, что у самцов две половые хромосомы: Х и Y. Самки млекопитающих имеют две X-хромосомы, а значит, гомозиготны (гомогаметны). У птиц и некоторых насекомых все наоборот: женские особи гетерогаметны и обладают двумя разными половыми хромосомами, W и Z, а у гомогаметных самцов две половые хромосомы Z. Представьте себе скрещивание самца и самки, принадлежащих к двум близкородственным видам: в результате рождается жизнеспособное потомство. Но если мы посмотрим на это потомство внимательней, выяснится, что оно включает либо только девочек, либо только мальчиков. Или, если присутствуют оба пола, один из них стерилен или неполноценен в чем-либо еще. Согласно правилу Холдейна, у млекопитающих таким ущербным полом будет мужской, а у птиц – женский. Список примеров, который пополняется с 1922 года, весьма впечатляет: правило подтверждается сотнями случаев для животных из множества таксонов. Исключений из этого правила для такой области, как биология, удивительно мало.