Вопрос жизни. Энергия, эволюция и происхождение сложности — страница 53 из 71

нечным, а собственные клетки, у которых не получается удовлетворить метаболические потребности, в конце концов нас убивают.


Рис. 33. Судьба клетки зависит от ее умения удовлетворять свои потребности.

Изображены две клетки, митохондрии которых способны вырабатывать одинаковое суммарное количество энергии. При этом у клеток разные потребности. У клетки А потребности умеренные (на это указывает толщина стрелок). Митохондрии могут их удовлетворять, не перевосстанавливаясь (митохондрии в нормальном состоянии обозначены серыми овалами). У клетки Б уровень потребностей изначально нормален, но впоследствии значительно повышается. Соразмерно увеличивается количество электронов, поступающих в митохондрии, но их энергии недостаточно, и дыхательные комплексы перевосстанавливаются, то есть приобретают избыточный заряд. Если возможности клетки в ближайшее время не расширятся, итогом станет клеточная смерть (рис. 32).


Вот почему важна скорость метаболизма. Клеткам с более высокой скоростью метаболизма угрожает опасность не справиться со своими потребностями, если их митохондрии будут производить столько же энергии, как и митохондрии других клеток. Не только митохондриальные заболевания, но и обыкновенное старение и связанные с ним болезни будут поражать в первую очередь ткани с самыми высокими метаболическими потребностями. И, чтобы завершить круг, вспомним, как различается скорость метаболизма у двух полов. У самцов (по крайней мере, у млекопитающих) скорость метаболизма выше, чем у самок. Генетические дефекты митохондрий будут проявляться сильнее у пола, для которого характерна более высокая скорость метаболизма: у мужского. Некоторые митохондриальные заболевания и в самом деле шире распространены среди мужчин. Так, наследственная оптическая нейропатия Лебера встречается у них в пять раз чаще, чем у женщин, а болезнь Паркинсона, также имеющая заметную митохондриальную составляющую, – в два раза чаще. Вдобавок самцы более чувствительны к митохондриально-ядерным рассогласованиям. Если такие рассогласования появляются при скрещивании между репродуктивно изолированными популяциями, это ведет к гибридному разрушению. Получается, гибридному разрушению сильнее подвержен пол с наиболее высокой скоростью метаболизма, а у особей этого пола, в свою очередь, наибольшей опасности подвергаются ткани с повышенной скоростью метаболизма. И все это закономерные последствия того, что для сложной жизни необходимо два генома.

Эти соображения позволяют дать красивое и простое объяснение правилу Холдейна: особи того пола, для которого характерна более высокая скорость метаболизма, чаще оказываются стерильными или нежизнеспособными. Но так ли это? И важно ли? Что ж, объяснение может быть верным и при этом простым (даже банальным), к тому же ничто из сказанного не противоречит другим возможным причинам, в силу которых может выполняться правило Холдейна. Никто не говорит, что скорость метаболизма должна выступать единственной причиной, но действительно ли она важна? Я думаю, да. Например, известно, что температура приближает гибридное разрушение. Потомство от скрещивания двух близкородственных видов жуков-чернотелок Tribolium castaneum и Tribolium freeman остается здоровым при обычной для них температуре 29 °C, но при повышении температуры до 34 °C самки (в данном случае именно они) развиваются с уродствами конечностей и антенн. Такая разновидность температурной чувствительности широко распространена и, как правило, вызывает бесплодие у представителей лишь одного из полов. Этот механизм проще понять, приняв во внимание скорость метаболизма: перейдя границы допустимых потребностей, определенные ткани начинают разрушаться.

В числе таких тканей часто оказываются ткани половых органов, в особенности мужских, где на протяжении всей жизни идет производство спермы. Весьма впечатляющий пример из растительного мира – цитоплазматическая мужская стерильность. Большинство цветущих растений – гермафродиты, но при этом среди них высока доля особей, у которых развивается мужская стерильность. Получаются как бы два “пола”: гермафродиты и женские растения (на самом деле гермафродиты с мужской стерильностью). Данное явление вызывается митохондриями, и этот случай традиционно рассматривался как проявление эгоистического конфликта[95]. Однако молекулярные исследования показали, что мужская стерильность может просто отражать скорость метаболизма. Оксфордский ботаник Крис Ливер показал, что цитоплазматическую мужскую стерильность у подсолнечника вызывает ген, кодирующий одну из субъединиц митохондриальной АТФ-синтазы. Проблема в ошибке рекомбинации, которая затрагивает относительно небольшую долю АТФ-синтаз. Из-за этого снижается максимально возможная скорость синтеза АТФ. В большей доле тканей эта мутация никак себя не проявляет, деградируют лишь мужские половые органы – пыльники (не поддающиеся замене клетки умирают в результате апоптоза, который запускается высвобождением цитохрома c из митохондрий, как и у нас). Похоже, пыльники у подсолнечника – единственный орган, ткани которого имеют настолько высокие метаболические потребности, что начинается разрушение: лишь там мутантные митохондрии оказываются неспособны удовлетворить метаболические запросы клеток ткани. Результат – мужская стерильность.

То же самое обнаружено у плодовой мушки. Пересаживая ядро из одной клетки в другую, можно сконструировать цитоплазматические гибриды (цибриды) с идентичными геномами, но разными наборами митохондриальных генов[96]. Из яйцеклеток, подвергнутых такой операции, развиваются зародыши мух с одинаковыми ядерными геномами, но с митохондриальными генами разных родственных видов. В итоге из-за различий в митохондриальных геномах насекомые оказываются поразительно не похожими друг на друга. В самых удачных случаях новорожденные мухи абсолютно нормальны. При наихудших сочетаниях двух геномов самцы рождаются стерильными: мужской пол у дрозофилы гетерогаметен[97]. Наиболее интересны промежуточные ситуации, когда мухи, на первый взгляд, нормальны. Но если изучить активность генов в различных органах, выясняется, что она нарушена, например в тканях тестикул. Экспрессия более 1 тыс. генов в тестикулах и сопутствующих половых органах оказывается повышенной. Пока неясно, что именно при этом происходит, но самое простое объяснение, на мой взгляд, таково: эти органы не могут справиться с обеспечением энергией собственных функций. Митохондрии в клетках этих органов не в полной мере совместимы с ядерными генами. Клетки тестикул, с их высокими метаболическими потребностями, испытывают физиологический стресс, а он провоцирует ответ, в который вовлекается значительная часть генома. Как и в случае цитоплазматической мужской стерильности у растений, несовместимость геномов сказывается лишь на органах с наиболее высокой метаболической активностью – на половых, причем исключительно мужских[98].

Если так, то почему у птиц самки сильнее подвержены подобным нарушениям? Примерно по тем же причинам, но здесь есть некие интересные отличия. У некоторых птиц, в особенности хищных, самки крупнее самцов и, возможно, поэтому растут быстрее. Но это не является общим правилом. Урсула Миттвоч показала, что яичники у цыплят спустя несколько недель замедленного роста начинают опережать в развитии семенники. Можно предположить, что в подобных случаях женские особи будут страдать скорее от бесплодия, чем от нежизнеспособности – ведь у них быстрее растут лишь половые органы. Но это не так. В большинстве случаев, когда выполняется правило Холдейна, гибриды оказываются как раз нежизнеспособными, а не стерильными. Это сбивало меня с толку, пока в прошлом году Джефф Хилл, специалист по половому отбору у птиц, не прислал мне статью о том, как работает правило Холдейна на птицах. Хилл показал, что у птиц некоторые ядерные гены, кодирующие дыхательные белки, расположены на Z-хромосоме (вспомните, что самцы имеют две Z-хромосомы, тогда как у самок присутствует и Z-хромосома, и W-хромосома одновременно; а это означает, что женский пол гетерогаметен). Почему это имеет значение? Если самки птиц наследуют одну копию Z-хромосомы, они получают лишь по одной копии нескольких критически важных ядерных генов, кодирующих дыхательные белки, – от отца. Если мать была не слишком придирчива при выборе супруга, ее митохондриальные гены могут оказаться несовместимы с его ядерными генами (которые у птенца будут в единственном экземпляре). Вырождение последует незамедлительно.

Хилл утверждает, что такое положение вещей обязывает самок птиц подходить к выбору партнера как можно тщательней, иначе их дочери погибнут. Этим, в свою очередь, могут объясняться огромные хвосты и яркая окраска самцов. Если Хилл прав, то сложный узор на хвосте сообщает о качестве митохондрий: грубые нарушения узора сигнализируют о грубых отклонениях в митохондриальной ДНК. Самки рассматривают узор как тест на совместимость. Но самец, который хорошо выглядит, на самом деле может быть очень плохим экземпляром. Хилл считает, что игра цвета отражает работу митохондрий, так как в митохондриях синтезируется большая часть пигментов. Ярко окрашенные самцы должны обладать митохондриальными генами превосходного качества. Пока эту гипотезу мало что подтверждает, но зато она показывает, сколь широко может распространяться влияние митонуклеарной коадаптации. Очень поучительно, что наличием двух геномов у сложных организмов могут объясняться такие разные загадки эволюции, как происхождение видов, возникновение полов и яркая окраска у самцов птиц.

Влияние может распространяться и глубже. За митонуклеарную несовместимость приходится платить, но и правильное сочетание имеет свою цену, делая совместимость необходимой. Баланс затрат и прибыли у разных видов может различаться в зависимости от потребности в кислороде. Как мы увидим, приходится выбирать между приспособленностью и плодовитостью.