Представьте, что вы умеете летать. На грамм массы вашего тела приходится в два раза больше энергии, чем у бегущего гепарда. Вы являете собой великолепное сочетание силы, легкости и высокой аэробной производительности. Однако вам стоит оставить мечты о полете, если только ваши митохондрии не близки к совершенству. Поговорим о конкуренции за пространство, которая разворачивается в предназначенной для полета мускулатуре. Разумеется, вам требуются миофибриллы – “скользящие нити”, которые осуществляют мышечное сокращение. Чем больше таких структур вы сможете вместить, тем сильнее будете: сила мышцы, как и прочность веревки, зависит от площади поперечного сечения. Но, в отличие от веревки, для сокращения мышцы требуется АТФ. Чтобы долгое время сохранять мышечное напряжение, необходимо на месте синтезировать АТФ. Значит, митохондрии должны помещаться непосредственно в мышцах. Они занимают место, которое также можно заполнить миофибриллами. Еще митохондриям нужен кислород. Следовательно, необходимы капилляры, чтобы доставлять кислород и удалять отходы. Оптимальная организация пространства в аэробной мышце такова: треть приходится на миофибриллы, треть – на митохондрии, еще треть – на капилляры. Такое соотношение наблюдается у нас, а также у гепардов и колибри (у них самая высокая скорость обмена веществ среди позвоночных). Итак, теперь понятно, что нельзя увеличить силу, просто набрав побольше митохондрий.
Следовательно, единственный способ, при помощи которого птицы смогут получать достаточно энергии, чтобы долго оставаться в полете, – это обзавестись “супермитохондриями”, которые вырабатывали бы больше АТФ за секунду, чем обычные митохондрии. Поток электронов от питательных веществ на кислород должен быть быстрым. Отбор должен действовать на каждом шаге, увеличивая максимальную скорость работы каждого дыхательного белка. Эти скорости можно измерить, и мы знаем, что ферменты в митохондриях птиц действительно работают быстрее, чем у млекопитающих. Но, как мы видели, дыхательный белок – это мозаика, составленная из субъединиц, закодированных в разных геномах. Быстрый поток электронов означает жесткий отбор на качественную совместную работу двух геномов – митонуклеарную коадаптацию. Чем выше уровень потребления кислорода, тем сильнее должен быть отбор на коадаптацию. Клетки, два генома которых работают недостаточно слаженно и эффективно, элиминируются, вступая в апоптоз. Самое подходящее время для такого отбора – эмбриональное развитие. Если геномы у эмбриона работают недостаточно слаженно для поддержания полета, лучше оборвать развитие как можно раньше.
Но насколько должно быть несовместимым несовместимое? Вероятно, должен быть некий порог, точка, в которой запускается апоптоз. За этим порогом скорость потока электронов по мозаичной дыхательной цепи недостаточно высока: она не подходит для работы. Отдельные клетки, а затем и весь эмбрион, погибают из-за апоптоза. Напротив, ниже порога скорость электронов достаточно высока, и, следовательно, два генома слаженно работают. В этом случае клетки не убивают себя, и эмбрион остается жить. Развитие продолжается, и вскоре на свет появляется, например, здоровый птенец. Его митохондрии прошли предварительную проверку и “сертифицированы” для своей работы[99]. Важно то, что эта работа может быть разной. Если это обеспечение полета, то геномы должны работать с великолепной слаженностью. Цена высокой аэробной производительности – низкая плодовитость. Чтобы большее число эмбрионов получило возможность выжить, приходится жертвовать другими, менее важными целями: приносить их на алтарь совершенства. Мы можем найти последствия этого даже в митохондриальных генах. У птиц они изменяются медленнее, чем у большинства млекопитающих (кроме летучих мышей, которые сталкиваются с теми же проблемами, что и птицы). У нелетающих птиц, на которых эти ограничения не действуют, замены происходят с более высокой скоростью. У большинства птиц низкие темпы мутационной изменчивости из-за того, что их митохондриальные последовательности уже наилучшим образом приспособлены для полета. Отклонения от этого идеала плохо сказываются на птицах и поэтому обычно отсеиваются отбором. Если большинство изменений элиминируется, оставшаяся часть относительно постоянна.
Но предположим, что я крыса и полеты меня не интересуют. Глупо жертвовать большей частью моего многочисленного будущего потомства ради совершенства. Мы уже знаем, что сигналом, запускающим апоптоз (форму функционального отбора), служит образование свободных радикалов. Медленный, ленивый поток электронов по дыхательной цепи выдает плохую совместимость митохондриального и ядерного геномов. Перевосстановление компонентов дыхательных цепей приводит к образованию свободных радикалов. Цитохром c выходит из митохондрий, и потенциал на мембране падает. Будь я птицей, сочетание этих факторов послужило бы сигналом для запуска апоптоза. Мои дети умирали бы еще на эмбриональной стадии. Но я крыса, и мне это не нужно. Что, если при помощи какого-либо биохимического фокуса я смогу “проигнорировать” свободнорадикальный сигнал, который должен вызвать смерть моего потомства? Я подниму порог смерти. Это будет означать, что образование свободных радикалов сможет достигать больших масштабов прежде, чем вызвать апоптоз. Так я получу преимущество: большая часть моего потомства переживет эмбриональный период, и я стану гораздо плодовитее. Но какую цену мне придется заплатить за феерическую продуктивность?
Летать я определенно не смогу. Более того, моя аэробная производительность окажется ограниченной. У моего потомства будет очень мало шансов заполучить оптимальную комбинацию митохондриальных и ядерных генов. Вот мы и подошли к следующей точке баланса затрат и прибылей: приспособленности против болезней. Вспомните гипотезу Дугласа Уоллеса о том, что быстрая эволюция митохондриальных генов у животных способствует их адаптации к разному климату и питанию. Мы не знаем, как именно это работает (если работает), но удивительно, если бы в этой гипотезе не оказалось зерна истины. Самые значимые факторы, к которым стоит приспособиться (иначе мы недолго протянем), – это рацион и температура тела. Митохондрии очень важны и в том, и в другом случае. Работа митохондрий в высокой степени зависит от митохондриальной ДНК. Различные последовательности ДНК обеспечивают разное качество работы в разных условиях. Одни будут лучше работать при более низкой температуре, другие – при более высокой. Одни лучше подойдут для повышенной влажности, другие – для сжигания калорий при диете с повышенным содержанием жиров. И так далее.
Есть намеки на то, что отбор в определенных условиях действительно идет: например, в человеческих популяциях довольно четко наблюдается распределение по типам митохондриальной ДНК в соответствии с географическими областями. Это не более чем намеки. И все же нет сомнений в том, что у птиц разнообразие митохондриальной ДНК гораздо ниже. Уже тот факт, что большинство отклонений от оптимальной для полета нуклеотидной последовательности элиминируется в ходе отбора, означает, что чем ниже изменчивость оставшейся ДНК, тем менее широк простор для отбора. Становится сложнее подобрать вариант митохондриальной ДНК, который хорошо подходил бы, например, для холода или же для богатой жирами диеты. В этом отношении особенно интересен тот факт, что птицы часто мигрируют вместо того, чтобы страдать от сезонных изменений в условиях среды обитания. Возможно ли, что их митохондрии лучше приспособлены для того, чтобы обеспечивать длительную нагрузку в процессе миграции, чем к работе в более жестких условиях, с которыми они могут столкнуться, если птицы останутся в одной местности? У крыс, напротив, нет проблем с вариативностью, и, казалось бы, за счет этого они должны иметь обширный материал для адаптаций. Действительно ли это так? Откровенно говоря, я не знаю, но эти звери отлично умеют приспосабливаться. Черт бы взял всех этих крыс, от которых не спастись.
Но, конечно, широкое разнообразие митохондриальных генов имеет свою цену. Это болезни. В сущности, этого можно избежать, осуществляя отбор клеток зародышевой линии и избавляясь от тех, которые несут митохондриальные мутации, еще до их созревания. Есть некоторые свидетельства того, что такой отбор имеет место: у мышей и крыс тяжелые митохондриальные мутации обычно ликвидируются за несколько поколений, хотя менее вредные мутации и переходят к потомству почти беспрепятственно. Только задумайтесь: несколько поколений! Отбор здесь очень слабый. Если вам выпало родиться с серьезным митохондриальным заболеванием, вы не сможете утешиться надеждой, что ваши внуки (если повезет их иметь) будут здоровыми. Даже если отбор вправду действует на клетки зародышевой линии, отсеивая митохондриальных мутантов, это не дает никаких гарантий отсутствия митохондриальных заболеваний. Ядра незрелых яйцеклеток могут быть ничуть не похожи на то, что получится. Они много лет находятся в подвешенном состоянии, застыв на полпути к завершению мейоза – а в какой-то момент им приходится объединять свои потрепанные, видавшие виды гены с генами партнера. Отбор на митонуклеарную коадаптацию может происходить лишь после того, как зрелая яйцеклетка оплодотворена сперматозоидом и образовалось новое, генетически уникальное ядро. Сами по себе митохондриальные мутации не влекут гибридное разрушение: его вызывают несоответствия между ядерными и митохондриальным генами (причем и те, и другие в других обстоятельствах могут прекрасно работать). Мы видели, что сильный отбор, отсеивающий клетки с митонуклеарной несовместимостью, неизбежно увеличивает вероятность бесплодия. Если мы не хотим оказаться бесплодными, то должны заплатить другую цену – у нас будет повышенный риск возникновения болезней. Столкновение с этим выбором – плодовитость и заболевания или бесплодие и здоровье в остальном – также является закономерным следствием необходимости обладать двумя геномами.