Вопрос жизни. Энергия, эволюция и происхождение сложности — страница 64 из 71

Holland, H. D.The oxygenation of the atmosphere and oceans // Phil. Trans. R. Soc. B 361: 903–915 (2006).

Lane, N.Life’s a gas // New Scientist 2746: 36–39 (2010).

Lane, N.Oxygen: The Molecule that Made the World. Oxford University Press, Oxford (2002).

Shields-Zhou, G., and L. OchThe case for a Neoproterozoic oxygenation event: Geochemical evidence and biological consequences // GSA Today 21: 4–11 (2011).

Предположения на основе гипотезы серийных эндосимбиозов

Archibald, J. M.Origin of eukaryotic cells: 40 years on // Symbiosis 54: 69–86 (2011).

Margulis, L.Genetic and evolutionary consequences of symbiosis // Experimental Parasitology 39: 277–349 (1976).

O’Malley, M.The first eukaryote cell: an unfinished history of contestation // Studies in History and Philosophy of Biological and Biomedical Sciences 41: 212–224 (2010).

Архезои

Cavalier-Smith, T.Archaebacteria and archezoa // Nature 339: 100–101 (1989).

Cavalier-Smith, T.Predation and eukaryotic origins: A coevolutionary perspective // International Journal of Biochemistry and Cell Biology 41: 307–332 (2009).

Giezen, M. van derHydrogenosomes and mitosomes: Conservation and evolution of functions // Journal of Eukaryotic Microbiology 56: 221–231 (2009).

Henze, K., and W. MartinEssence of mitochondria // Nature 426: 127–128 (2003).

Martin, W. F., and M. MüllerOrigin of Mitochondria and Hydrogenosomes. Springer, Heidelberg (2007).

Tielens, A. G. M., Rotte, C., Hellemond, J. J., and W. MartinMitochondria as we don’t know them // Trends in Biochemical Sciences 27: 564–572 (2002).

Yong, E.The unique merger that made you (and ewe and yew) // Nautilus 17: Sept 4 (2014).

Супергруппы эукариот

Baldauf, S. L., Roger, A. J., Wenk-Siefert, I., and W. F. DoolittleA kingdom-level phylogeny of eukaryotes based on combined protein data // Science 290: 972–977 (2000).

Hampl, V., Huga, L., Leigh, J. W., Dacks, J. B., Lang, B. F., Simpson, A. G. B., and A. J. RogerPhylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups” // Proceedings National Academy Sciences USA 106: 3859–3864 (2009).

Keeling, P. J., Burger, G., Durnford, D. G., Lang, B. F., Lee, R. W., Pearlman, R. E., Roger, A. J., and M. W. GreyThe Tree of eukaryotes // Trends in Ecology and Evolution 20: 670–676 (2005).

Последний общий предок эукариот

Embley T. M., and W. MartinEukaryotic evolution, changes and challenges // Nature 440: 623–630 (2006).

Harold, F.In Search of Cell History: The Evolution of Life’s Building Blocks. Chicago University Press, Chicago (2014).

Koonin, E. V.The origin and early evolution of eukaryotes in the light of phylogenomics // Genome Biology 11: 209 (2010).

McInerney, J. O., Martin, W. F., Koonin, E. V., Allen, J. F., Galperin, M. Y., Lane, N., Archibald, J. M., and T. M. EmbleyPlanctomycetes and eukaryotes: a case of analogy not homology // BioEssays 33: 810–817 (2011).

Парадокс малых шагов к сложности

Darwin, C.On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. 1st edn. John Murray, London (1859).

Land, M. F., and D.-E. NilssonAnimal Eyes. Oxford University Press, Oxford (2002).

Lane, N.Bioenergetic constraints on the evolution of complex life // Cold Spring Harbor Perspectives in Biology, doi: 10.1101/cshperspect.a015982 (2014).

Lane, N.Energetics and genetics across the prokaryote-eukaryote divide // Biology Direct 6: 35 (2011).

Müller, M., Mentel, M., van Hellemond, J. J., Henze, K., Woehle, C., Gould, S. B., Yu, R. Y., van der Giezen, M., Tielens, A. G., and W. F. MartinBiochemistry and evolution of anaerobic energy metabolism in eukaryotes // Microbiology and Molecular Biology Reviews 76: 444–495 (2012).

Глава 2. Что значит жить?

Энергия, энтропия и структура

Amend, J. P., LaRowe, D. E., McCollom, T. M., and E. L. ShockThe energetics of organic synthesis inside and outside the cell // Phil. Trans. R. Soc. B. 368: 20120255 (2013).

Battley, E. H.Energetics of Microbial Growth. Wiley Interscience, New York (1987).

Hansen L. D., Criddle, R. S., and E. H. BattleyBiological calorimetry and the thermodynamics of the origination and evolution of life // Pure and Applied Chemistry 81: 1843–1855 (2009).

McCollom, T., and J. P. AmendA thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro-organisms in oxic and micro-oxic environments // Geobiology 3: 135–144 (2005).

Minsky, A., Shimoni, E., and D. Frenkiel-KrispinStress, order and survival // Nature Reviews in Molecular Cell Biology 3: 50–60 (2002).

Скорость синтеза АТФ

Fenchel, T., and B. J. FinlayRespiration rates in heterotrophic, free-living protozoa // Microbial Ecology 9: 99–122 (1983).

Makarieva, A. M., Gorshkov, V. G., and B. L. LiEnergetics of the smallest: do bacteria breathe at the same rate as whales? Proc. R. Soc. B 272: 2219–2224 (2005).

Phillips, R., Kondev, J., Theriot, J., and H. GarciaPhysical Biology of the Cell. Garland Science, New York (2012).

Rich, P. R.The cost of living // Nature 421: 583 (2003).

Schatz, G.The tragic matter // FEBS Letters 536: 1–2 (2003).

Механизм дыхания и синтез АТФ

Abrahams, J. P., Leslie, A. G., Lutter, R., and J. E. WalkerStructure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria // Nature 370: 621–628 (1994).

Baradaran, R., Berrisford, J. M., Minhas, S. G., and L. A. SazanovCrystal structure of the entire respiratory complex I // Nature 494: 443–448 (2013).

Hayashi, T., and A. A. StuchebrukhovQuantum electron tunneling in respiratory complex I // Journal of Physical Chemistry B 115: 5354–5364 (2011).

Moser, C. C., Page, C. C., and P. L. DuttonDarwin at the molecular scale: selection and variance in electron tunnelling proteins including cytochrome c oxidase // Phil. Trans. R. Soc. B 361: 1295–1305 (2006).

Murata, T., Yamato, I., Kakinuma, Y., Leslie, A. G. W., and J. E. WalkerStructure of the rotor of the V-type Na+-ATPase from Enterococcus hirae // Science 308: 654–659 (2005).

Nicholls, D. G., and S. J. FergusonBioenergetics. 4th edn. Academic Press, London (2013).

Stewart, A. G., Sobti, M., Harvey, R. P., and D. StockRotary ATPases: Models, machine elements and technical specifications // BioArchitecture 3: 2–12 (2013).

Vinothkumar, K. R., Zhu, J., and J. HirstArchitecture of the mammalian respiratory complex I // Nature 515: 80–84 (2014).

Питер Митчелл и хемиосмотическое сопряжение

Harold, F. M.The Way of the Cell: Molecules, Organisms, and the Order of Life. Oxford University Press, New York (2003).

Lane, N.Power, Sex, Suicide: Mitochondria and the Meaning of Life. Oxford University Press, Oxford (2005).

Mitchell, P.Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism // Nature 191: 144–148 (1961).

Mitchell, P.Keilin’s respiratory chain concept and its chemiosmotic consequences // Science 206: 1148–1159 (1979).

Mitchell, P.The origin of life and the formation and organising functions of natural membranes / In: Proceedings of the first international symposium on the origin of life on the Earth. Oparin, A. I., Pasynski, A. G., Braunstein, A. E., and T. E. Pavlovskaya, eds. Moscow Academy of Sciences, USSR (1957).

Prebble, J., and B. WeberWandering in the Gardens of the Mind. Oxford University Press, New York (2003).

Углерод и необходимость окислительно-восстановительных реакций

Falkowski, P.Life’s engines: how microbes made Еarth habitable. Princeton University Press, Princeton (2015).

Kim, J. D., Senn, S., Harel, A., Jelen, B. I., and P. G. FalkowskiDiscovering the electronic circuit diagram of life: structural relationships among transition metal binding sites in oxidoreductases // Phil. Trans. R. Soc. B 368: 20120257 (2013).

Morton, O.Eating the Sun: How Plants Power the Planet. Fourth Estate, London (2007).

Pace, N.The universal nature of biochemistry // Proceedings National Academy Sciences USA 98: 805–808 (2001).

Schoepp-Cothenet, B., van Lis, R., Atteia, A., Baymann, F., Capowiez, L., Ducluzeau, A.-L., Duval, S., Brink, F. ten, Russell, M. J., and W. NitschkeOn the universal core of bioenergetics // Biochimica Biophysica Acta Bioenergetics 1827: 79–93 (2013).

Фундаментальные различия бактерий и архей

Edgell, D. R., and W. F. DoolittleArchaea and the origin(s) of DNA replication proteins // Cell 89: 995–998 (1997).

Koga, Y., Kyuragi, T., Nishihara, M., and N. SoneDid archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent