Вопрос жизни. Энергия, эволюция и происхождение сложности — страница 67 из 71

Martin, W., Sousa, F. L., and N. LaneEnergy at life’s origin // Science 344: 1092–1093 (2014).

Sousa, F. L., Thiergart, T., Landan, G., Nelson-Sathi, S., Pereira, I. A. C., Allen, J. F., Lane, N., and W. F. MartinEarly bioenergetic evolution // Phil. Trans. R. Soc. B 368: 20130088 (2013).

Проблема мембранной проницаемости

Lane, N., and W. MartinThe origin of membrane bioenergetics // Cell 151: 1406–1416 (2012).

Le Page, M.Meet your maker // New Scientist 2982: 30–33 (2014).

Mulkidjanian, A. Y., Bychkov, A. Y., Dibrova, D. V., Galperin, M. Y., and E. V. KooninOrigin of first cells at terrestrial, anoxic geothermal fields // Proceedings National Academy Sciences USA 109: E821-E830 (2012).

Sojo, V., Pomiankowski, A., and N. LaneA bioenergetic basis for membrane divergence in archaea and bacteria // PLoS Biology 12 (8): e1001926 (2014).

Yong, E.How life emerged from deep-sea rocks // Nature, doi: 10.1038/nature.2012.12109 (2012).

Мембранные белки не делают различий между H+и Na+

Buckel, W., and R. K. ThauerEnergy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation // Biochimica Biophysica Acta 1827: 94–113 (2013).

Lane, N., Allen, J. F., and W. MartinHow did LUCA make a living? Chemiosmosis in the origin of life // BioEssays 32: 271–280 (2010).

Schlegel, K., Leone, V., Faraldo-Gómez, J. D., and V. MüllerPromiscuous archaeal ATP synthase concurrently coupled to Na+and H+translocation // Proceedings National Academy Sciences USA 109: 947–952 (2012).

Бифуркация электронов

Buckel, W., and R. K. ThauerEnergy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation // Biochimica Biophysica Acta 1827: 94–113 (2013).

Kaster, A.-K., Moll, J., Parey, K., and R. K. ThauerCoupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic Archaea // Proceedings National Academy Sciences USA 108: 2981–2986 (2011).

Thauer, R. K.A novel mechanism of energetic coupling in anaerobes // Environmental Microbiology Reports 3: 24–25 (2011).

Глава 5. Появление сложных клеток

Размеры геномов

Cavalier-Smith, T.Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion // Annals of Botany 95: 147–175 (2005).

Cavalier-Smith, T.Skeletal DNA and the evolution of genome size // Annual Review of Biophysics and Bioengineering 11: 273–301 (1982).

Gregory, T. R.Synergy between sequence and size in large-scale genomics // Nature Reviews in Genetics 6: 699–708 (2005).

Lynch, M.The Origins of Genome Architecture. Sinauer Associates, Sunderland MA (2007).

Возможные ограничения размера генома у эукариот

Cavalier-Smith, T.Predation and eukaryote cell origins: A coevolutionary perspective // International Journal Biochemistry Cell Biology 41: 307–322 (2009).

Duve, C. deThe origin of eukaryotes: a reappraisal // Nature Reviews in Genetics 8: 395–403 (2007).

Koonin, E. V.Evolution of genome architecture // International Journal Biochemistry Cell Biology 41: 298–306 (2009).

Lynch, M., and J. S. ConeryThe origins of genome complexity // Science 302: 1401–1404 (2003).

Maynard Smith, J., and E. SzathmáryThe Major Transitions in Evolution. Oxford University Press, Oxford. (1995).

Химерное происхождение эукариот

Cotton, J. A., and J. O. McInerneyEukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function // Proceedings National Academy Sciences USA 107: 17252–17255 (2010).

Esser, C., Ahmadinejad, N., Wiegand, C., et al. A genome phylogeny for mitochondria among alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes // Molecular Biology Evolution 21: 1643–1660 (2004).

Koonin, E. V.Darwinian evolution in the light of genomics // Nucleic Acids Research 37: 1011–1034 (2009).

Pisani, D., Cotton, J. A., and J. O. McInerneySupertrees disentangle the chimeric origin of eukaryotic genomes // Molecular Biology Evolution 24: 1752–1760 (2007).

Rivera, M. C., and J. A. LakeThe ring of life provides evidence for a genome fusion origin of eukaryotes // Nature 431: 152–155 (2004).

Thiergart, T., Landan, G., Schrenk, M., Dagan, T., and W. F. MartinAn evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin // Genome Biology and Evolution 4: 466–485 (2012).

Williams, T. A., Foster, P. G., Cox, C. J., and T. M. EmbleyAn archaeal origin of eukaryotes supports only two primary domains of life // Nature 504: 231–236 (2013).

Позднее происхождение брожения

Say, R. F., and G. FuchsFructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme // Nature 464: 1077–1081 (2010).

Стехиометрия накопления энергии

Hoehler, T. M., and B. B. JørgensenMicrobial life under extreme energy limitation // Nature Reviews in Microbiology 11: 83–94 (2013).

Lane, N.Why are cells powered by proton gradients? // Nature Education 3: 18 (2010).

Martin, W., and M. J. RussellOn the origin of biochemistry at an alkaline hydrothermal vent // Phil. Trans. R. Soc. B 367: 1887–1925 (2007).

Thauer, R. K., Kaster, A.-K., Seedorf, H., Buckel, W., and R. HedderichMethanogenic archaea: ecologically relevant differences in energy conservation // Nature Reviews Microbiology 6: 579–591 (2007).

Вирусная инфекция и клеточная смерть

Bidle, K. D., and P. G. FalkowskiCell death in planktonic, photosynthetic microorganisms // Nature Reviews Microbiology 2: 643–655 (2004).

Lane, N.Origins of death // Nature 453: 583–585 (2008).

Refardt, D., Bergmiller, T., and R. KümmerliAltruism can evolve when relatedness is low: evidence from bacteria committing suicide upon phage infection // Proc. R. Soc. B 280: 20123035 (2013).

Vardi, A., Formiggini, F., Casotti, R., De Martino, A., Ribalet, F., Miralto, A., and C. BowlerA stress surveillance system based on calcium and nitroc oxide in marine diatoms // PLoS Biology 4 (3): e60 (2006).

Соотношение площади поверхности и объема у бактерий

Fenchel, T., and B. J. FinlayRespiration rates in heterotrophic, free-living protozoa // Microbial Ecology 9: 99–122 (1983).

Harold, F.The Vital Force: a Study of Bioenergetics. W. H. Freeman, New York (1986).

Lane, N., and W. MartinThe energetics of genome complexity // Nature 467: 929–934 (2010).

Lane, N.Energetics and genetics across the prokaryote-eukaryote divide // Biology Direct 6: 35 (2011).

Makarieva, A. M., Gorshkov, V. G., and B. L. LiEnergetics of the smallest: do bacteria breathe at the same rate as whales? // Proc. R. Soc. B 272: 2219–2224 (2005).

Vellai, T., and G. VidaThe origin of eukaryotes: the difference between prokaryotic and eukaryotic cells // Proc. R. Soc. B 266: 1571–1577 (1999).

Гигантские бактерии

Angert, E. R.DNA replication and genomic architecture of very large bacteria // Annual Review Microbiology 66: 197–212 (2012).

Mendell, J. E., Clements, K. D., Choat, J. H., and E. R.Extreme polyploidy in a large bacterium // Proceedings National Academy Sciences USA 105: 6730–6734 (2008).

Schulz, H. N., and B. B. JorgensenBig bacteria // Annual Review Microbiology 55: 105–137 (2001).

Schulz, H. N.The genus Thiomargarita // Prokaryotes 6: 1156–1163 (2006).

Незначительная величина геномов эндосимбионтов и как это сказывается на энергии

Gregory, T. R., and R. DeSalleComparative genomics in prokaryotes / In: The Evolution of the Genome. Gregory, T. R., ed. Elsevier, San Diego, pp. 585–575 (2005).

Lane, N., and W. MartinThe energetics of genome complexity // Nature 467: 929–934 (2010).

Lane, N.Bioenergetic constraints on the evolution of complex life // Cold Spring Harbor Perspectives in Biology, doi: 10.1101/cshperspect.a015982 (2014).

Эндосимбионты в бактериях

Dohlen, C. D. von, Kohler, S., Alsop, S. T., and W. R. McManusMealybug beta-proteobacterial symbionts contain gamma-proteobacterial symbionts // Nature 412: 433–436 (2001).

Почему у митохондрий сохранились собственные гены

Alberts, A., Johnson, A., Lewis, J., Raff, M., Roberts, K., and P. WalterMolecular Biology of the Cell. 5th edn. Garland Science, New York (2008).

Allen, J. F.Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes // Journal of Theoretical Biology 165: 609–631 (1993).

Allen, J. F.The function of genomes in bioenergetic organelles // Phil. Trans. R. Soc. B 358: 19–37 (2003).