Bjelakovic, G., Nikolova, D., Gluud, L. L., Simonetti, R. G., and C. GluudAntioxidant supplements for prevention of mortality in healthy participants and patients with various diseases // Cochrane Database of Systematic Reviews, doi: 10.1002/14651858. CD007176 (2008).
Gutteridge, J. M. C., and B. HalliwellAntioxidants: Molecules, medicines, and myths // Biochemical Biophysical Research Communications 393: 561–564 (2010).
Gnaiger, E., Mendez, G., and S. C. HandHigh phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia // Proceedings National Academy Sciences 97: 11080–11085 (2000).
Moyer, M. W.The myth of antioxidants // Scientific American 308: 62–67 (2013).
Свободнорадикальная сигнализация при старении
Lane, N.Mitonuclear match: optimizing fitness and fertility over generations drives ageing within generations // BioEssays 33: 860–869 (2011).
Moreno-Loshuertos, R., Acin-Perez, R., Fernandez-Silva, P., Movilla, N., Perez-Martos, A., de Cordoba S. R., Gallardo, M. E., and J. A. EnriquezDifferences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants // Nature Genetics 38: 1261–1268 (2006).
Sobek, S., Rosa, I. D., Pommier, Y., et al. Negative regulation of mitochondrial transcrioption by mitochondrial topoisomerase I // Nucleic Acids Research 41: 9848–9857 (2013).
Свободные радикалы в контексте теории скорости жизни
Barja, G.Mitochondrial oxygen consumption and reactive oxygen species production are independently modulated: implications for aging studies // Rejuvenation Research 10: 215–224 (2007).
Boveris, A., and B. ChanceMitochondrial generation of hydrogen peroxide – general properties and effect of hyperbaric oxygen // Biochemical Journal 134: 707–716 (1973).
Pearl, R.The Rate of Living. Being an Account of some Experimental Studies on the Biology of Life Duration. University of London Press, London (1928).
Свободные радикалы и болезни пожилого возраста
Desler, C., Marcker, M. L., Singh, K. K., and L. J. RasmussenThe importance of mitochondrial DNA in aging and cancer // Journal of Aging Research 2011: 407536 (2011).
Halliwell, B., and J. M. C. GutteridgeFree Radicals in Biology and Medicine. 4th edn. Oxford University Press, Oxford (2007).
He, Y., Wu, J., Dressman, D. C., et al. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells // Nature 464: 610–614 (2010).
Lagouge, M., and N.-G. LarssonThe role of mitochondrial DNA mutations and free radicals in disease and ageing // Journal of Internal Medicine 273: 529–543 (2013).
Lane, N.A unifying view of aging and disease: the double agent theory // Journal of Theoretical Biology 225: 531–540 (2003).
Moncada, S., Higgs, A. E., and S. L. ColomboFulfilling the metabolic requirements for cell proliferation // Biochemical Journal 446: 1–7 (2012).
Аэробная производительность и срок жизни
Bennett, A. F., and J. A. RubenEndothermy and activity in vertebrates // Science 206: 649–654 (1979).
Bramble, D. M., and D. E. LiebermanEndurance running and the evolution of Homo // Nature 432: 345–352 (2004).
Koch, L. G., Kemi, O. J., Qi, N., et al. Intrinsic aerobic capacity sets a divide for aging and longevity // Circulation Research 109: 1162–1172 (2011).
Wisløff, U., Najjar, S. M., Ellingsen, O., et al. Cardiovascular risk factors emerge after artificial selection for low aerobic capacity // Science 307: 418–420 (2005).
Прокариота или эукариота?
Wujek, D. E.Intracellular bacteria in the blue-green-alga Pleurocapsa minor // Transactions American Microscopical Society 98: 143–145 (1979).
Yamaguchi, M., Mori, Y., Kozuka, Y., et al. Prokaryote or eukaryote? A unique organism from the deep sea // Journal of Electron Microscopy 61: 423–431 (2012).
Об иллюстрациях
Рис. 1. Филогенетическое дерево, отражающее химерное происхождение сложных клеток. См.: Martin, W.Mosaic bacterial chromosomes: a challenge en route to a tree of genomes // BioEssays 21: 99–104 (1999).
Рис. 3. А. Fawcett, D.The Cell. W. B. Saunders, Philadelphia (1981). Б. Mark Farmer, University of Georgia. В. Newcastle University Biomedicine Scientific Facilities. Г. Peter Letcher, University of Alabama.
Рис. 4. А. Katz, L. A.Changing perspectives on the origin of eukaryotes // Trends in Ecology and Evolution 13: 493–497 (1998). Б. Adam, R. D.Biology of Giardia lamblia // Clinical Reviews in Microbiology 14: 447–475 (2001).
Рис. 5. Koonin, E. V.The incredible expanding ancestor of eukaryotes // Cell 140: 606–608 (2010).
Рис. 6. Soh, E. Y., Shin, H. J., and K. ImThe protective effects of monoclonal antibodies in mice from Naegleria fowleri infection // Korean Journal of Parasitology. 30: 113–123 (1992).
Рис. 7. Singer, S. J., and G. L. NicolsonThe fluid mosaic model of the structure of cell membranes // Science 175: 720–731 (1972).
Рис. 8. А. Sazanov, L. A., and P. HinchliffeStructure of the hydrophilic domain of respiratory complex I from Thermus thermophiles // Science 311: 1430–1436 (2006). Б. Baradaran, R., Berrisford, J. M., Minhas, G. S., and L. A. SazanovCrystal structure of the entire respiratory complex I // Nature 494: 443–448 (2013). В. Vinothkumar, K. R., Zhu, J., and J. HirstArchitecture of mammalian respiratory complex I // Nature 515: 80–84 (2014).
Рис. 9. Fawcett, D.The Cell. W. B. Saunders, Philadelphia (1981).
Рис. 10. Goodsell, David S.The Machinery of Life. Springer, New York (2009).
Рис. 11. Russell, M. J., and W. MartinThe rocky roots of the acetyl-CoA pathway // Trends in Biochemical Sciences 29: 358063 (2004).
Рис. 12. Deborah S. Kelley and the Oceanography Society (Oceanography 18 September 2005).
Рис. 13. А – В. Baaske, P., Weinert, F. M., Duhr, S., et al. Extreme accumulation of nucleotides in simulated hydrothermal pore systems // Proceedings National Academy Sciences USA 104: 9346–9351 (2007). Г. Herschy, B., Whicher, A., Camprubi, E., Watson, C., Dartnell, L., Ward, J., Evans, J. R. G., and N. LaneAn origin-of-life reactor to simulate alkaline hydrothermal vents // Journal of Molecular Evolution 79: 213–227 (2014).
Рис. 14. Herschy, B., Whicher, A., Camprubi, E., Watson, C., Dartnell, L., Ward, J., Evans, J. R. G., and N. LaneAn origin-of-life reactor to simulate alkaline hydrothermal vents // Journal of Molecular Evolution 79: 213–227 (2014).
Рис. 15. Woese, C., Kandler, O., and M. L. WheelisTowards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya // Proceedings National Academy Sciences USA 87: 4576–4579 (1990).
Рис. 16. Sousa, F. L., Thiergart, T., Landan, G., Nelson-Sathi, S., Pereira, I. A. C., Allen, J. F., Lane, N., and W. F. MartinEarly bioenergetic evolution // Phil. Trans. R. Soc. B 368: 20130088 (2013).
Рис. 17. Sojo, V., Pomiankowski, A., and N. LaneA bioenergetic basis for membrane divergence in archaea and bacteria // PLOS Biology 12 (8): e1001926 (2014).
Рис. 19. Sojo, V., Pomiankowski, A., and N. LaneA bioenergetic basis for membrane divergence in archaea and bacteria // PLOS Biology 12 (8): e1001926 (2014).
Рис. 21. Thiergart, T., Landan, G., Schrenk, M., Dagan, T., and W. F. MartinAn evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin // Genome Biology and Evolution 4: 466–485 (2012).
Рис. 22. Williams, T. A., Foster, P. G., Cox, C. J., and T. M. EmbleyAn archaeal origin of eukaryotes supports only two primary domains of life // Nature 504: 231–236 (2013).
Рис. 23. А – Б. Esther Angert, Cornell University. В – Г. Heide Schulz-Vogt, Leibnitz Institute for Baltic Sea Research, Rostock. См.: Lane, N., and W. MartinThe energetics of genome complexity // Nature 467: 929–934 (2010); Schulz, H. N.The genus Thiomargarita // Prokaryotes 6: 1156–1163 (2006).
Рис. 24. Lane, N., and W. MartinThe energetics of genome complexity // Nature 467: 929–934 (2010); Lane, N.Bioenergetic constraints on the evolution of complex life // Cold Spring Harbor Perspectives in Biology, doi: 10.1101/cshperspect.a015982 CSHP (2014).
Рис. 25. А. Wujek, D. E.Intracellular bacteria in the blue-green-alga Pleurocapsa minor // Transactions of the American Microscopical Society 98: 143–145 (1979). Б.Gatehouse, L. N., Sutherland, P., Forgie, S. A., Kaji, R., and J. T. ChristelleraMolecular and histological characterization of primary (beta-proteobacteria) and secondary (gammaproteobacteria) endosymbionts of three mealybug species // Applied Environmental Microbiology 78: 1187 (2012).
Рис. 26. Fawcett, D.The Cell. W. B. Saunders, Philadelphia (1981).
Рис. 27. Alberts, B., Bray, D., Lewis, J., et al. Molecular Biology of the Cell. 4th edn. Garland Science, New York (2002).
Рис. 29.