Рис. 3. Сложность эукариот.
Четыре эукариотические клетки с равной морфологической сложностью.
А. Клетка животного (плазмоцит) с крупным ядром (Я), протяженными внутренними мембранами (эндоплазматический ретикулум, ЭР), на которых располагаются рибосомы, и митохондриями (M).
Б. Одноклеточная водоросль Euglena. Видны хлоропласты (Х), ядро (Я) и митохондрии (М).
В. Растительная клетка с клеточной стенкой, вакуолью (В), хлоропластами (Х), ядром (Я) и митохондриями (М).
Г. Зооспора хитридиомицета, виновного в исчезновении 150 видов лягушек: ядро (Я), митохондрии (М), жгутик (Ж) и гамма-тельца (ГТ), функция которых неясна.
Это поэтический взгляд, но теория последовательных эндосимбиозов в неявном виде подразумевает то же, что и классический отбор. Если бы она была верна, можно было бы ожидать независимого появления множества вариантов внутренней структуры, столь же многообразных, как внешний вид клеток. Рассмотрение любой серии эндосимбиозов, где сотрудничество основано на обмене метаболитами в определенной среде, наводит на мысль, что в разных средах должны реализоваться разные типы взаимодействия клеток. Гипотеза предсказывает, что если такие клетки становятся органеллами сложных эукариотических клеток, у разных эукариот должны появиться разные наборы компонентов внутренней структуры. Тогда в местах вроде стоячих илистых водоемов таились бы организмы всевозможных промежуточных форм, совсем не родственные друг другу, воплощающие разные варианты развития. До самой смерти в 2011 году Маргулис была твердо убеждена, что эукариоты – это мозаика, собранная из более простых организмов в результате цепи эндосимбиозов. Она видела в эндосимбиозе путь жизни, неизведанный “женственный” путь эволюции, на котором процветало “налаживание связей”, – кооперация, которая оказалась гораздо важнее, чем соперничество хищника и жертвы, по сути маскулинное. Но, при всем благоговении перед живыми клетками, Маргулис все же возвратилась к более сухой вычислительной филогенетике – изучению генных последовательностей и целых геномов, которое может рассказать, какие именно родственные отношения связывают разные группы эукариот. А это другая, гораздо более захватывающая история.
Эта история разворачивается вокруг крупной (более 1 тыс. видов) группы простых одноклеточных эукариот, у которых нет митохондрий. Эту группу когда-то считали примитивным “недостающим звеном” между бактериями и более сложными эукариотами, а именно – той самой промежуточной формой, существование которой предполагает теория серийных эндосимбиозов. К этой группе относится, например, пренеприятный кишечный паразит лямблия (Giardia). По словам Эдмунда Юна, она напоминает злобную слезинку (рис. 4). Ее образ жизни вполне соответствует внешнему виду: лямблия вызывает диарею. У нее не одно ядро, а целых два: казалось бы, не должно возникать сомнений в ее “эукариотичности”. Однако у лямблии нет некоторых других базовых эукариотических свойств (особенно заметно отсутствие митохондрий). В середине 80-х годов известный сокрушитель устоев Томас Кавалье-Смит утверждал, что лямблия и другие относительно простые эукариоты появились в самый ранний период эукариотической эволюции, еще до митохондрий, и сохранились в таком виде до наших дней. Хотя Кавалье-Смит и принял тот факт, что митохондрии произошли от бактериальных эндосимбионтов, у него не нашлось времени на детальное изучение теории серийных эндосимбиозов Маргулис. Вместо этого он представил (и до сих пор держится этого представления) самых древних эукариот в виде примитивных фагоцитов, вроде современных амеб, которые питаются, заглатывая другие клетки. Кавалье-Смит утверждает, что клетки, которые приобрели митохондрии, уже имели ядро, динамический внутренний скелет (который позволял им изменять форму и передвигаться), белковые механизмы (позволяющие загружать пищевые частицы внутрь клетки и перемещать их внутри), специализированные компартменты для внутриклеточного переваривания пищи и т. д. Приобретение митохондрий определенно пошло этим клеткам на пользу. Если представить, что клетка сродни автомобилю, то это нововведение сопоставимо с установкой турбокомпрессора. Но даже если машина начинает ездить быстрее, ее устройство в основе остается прежним: двигатель, коробка передач, тормоза, турбина лишь придает энергии. То же самое и примитивные фагоциты Кавалье-Смита. Все части механизма уже были на месте, за исключением митохондрий, которые снабдили клетку большим количеством энергии. Если и существует взгляд на происхождение эукариот, который можно назвать каноническим, – вот он.
С легкой руки Кавалье-Смита этих примитивных эукариот стали называть архезоями, чтобы подчеркнуть их предполагаемое древнее происхождение (рис. 4). Поскольку некоторые архезои паразитируют на человеке, вызывая болезни, их биохимия и структуры геномов представляют интерес для медицины. Исследования в этой области хорошо финансируются, поэтому мы знаем об этих существах чрезвычайно много. За 20 лет изучения геномных последовательностей и биохимии архезоев стало ясно, что на самом деле они вовсе не промежуточное звено между бактериями и эукариотами. Более того, они сами произошли от сложных эукариот, которые некогда обладали всеми компонентами эукариотических клеток, в том числе митохондриями. При переходе к паразитизму архезои утратили эту сложность. Но все они сохранили структуры, которые, как сейчас известно, являют собой упростившиеся митохондрии: гидрогеносомы или митосомы. Внешне эти структуры не похожи на митохондрии (правда, и те, и другие покрыты двумя мембранами, поэтому считалось, что митохондрий у архезоев нет), но из совокупности молекулярных и филогенетических данных точно следует, что гидрогеносомы и митосомы произошли от митохондрий, а не от других бактериальных эндосимбионтов (как считала Маргулис). Таким образом, у всех эукариот имеются либо митохондрии, либо произошедшие от них органеллы. Напрашивается вывод: митохондрии имелись уже у последнего общего предка эукариот, как в 1998 году предсказал Билл Мартин (гл. 1). Тот факт, что у эукариот имеются митохондрии, может показаться тривиальным, но в сочетании со знанием о том, как распространяются геномные последовательности по огромному микробному миру, он когда-то перевернул наше понимание эукариотической эволюции.
Рис. 4. Архезои – знаменитое якобы недостающее звено.
А. Устаревшая, вводящая в заблуждение филогенетическая схема, построенная на основе сравнения рибосомальной РНК. Она включает три домена: бактерии, археи и эукариоты. Перемычка № 1 обозначает предполагаемое раннее возникновение ядра, а № 2 – предполагаемое приобретение митохондрий, произошедшее позднее. Три группы, ответвившиеся в промежутке между полосками – это архезои, считавшиеся примитивными эукариотами, которые еще не приобрели митохондрии (к ним относится, например, лямблия).
Б. Теперь мы знаем, что архезои вовсе не примитивны: они произошли от организмов, у которых уже имелись митохондрии. В действительности ответвление архезоев произошло от главной части эукариотического дерева. (Я – ядро, ЭР – эндоплазматический ретикулум; В – вакуоль; Ж – жгутик.)
Известно, что все эукариоты восходят к общему предку, который лишь однажды возник в ходе эволюции. Абсолютно все эукариоты (растения, животные, водоросли, грибы, протисты) восходят к общему предку. Иными словами, это монофилетическая группа. Растения, животные и грибы произошли не от разных групп бактерий, а от одной популяции эукариотических клеток со сложной морфологией, единожды появившихся в истории Земли. Общий предок по определению может быть лишь один. В нашем случае под общим предком подразумевается не одна клетка, а одна популяция идентичных клеток. Само по себе это не означает, что появление сложных клеток – очень редкое событие. Вполне возможно, они возникали несколько раз, но выжили потомки лишь одной группы, а все остальные по каким-либо причинам вымерли. Я докажу, что к эукариотам это не относится, но сначала мы должны рассмотреть строение эукариотических клеток.
От общего предка эукариот довольно скоро отделилось пять “супергрупп” организмов с разной клеточной морфологией. Большинство этих групп неизвестны даже людям с классическим биологическим образованием. Примеры таких групп – Unikonta (к ним относятся животные и грибы), Excavata, Chromalveolata и Plantae (последние включают наземные растения и водоросли). Важны два момента. Во-первых, генетическое разнообразие внутри каждой группы гораздо выше, чем между предками этих групп (рис. 5). Это наводит на мысль, что в момент формирования эукариотических супергрупп происходила “взрывная” эволюция, точнее – монофилетическая радиация, которая могла быть связана с преодолением структурных ограничений. Во-вторых, общий предок эукариот уже был чрезвычайно сложной клеткой. Сравнивая признаки каждой супергруппы эукариот, можно попытаться восстановить облик общего предка. Признаки, присутствующие почти у всех видов внутри всех супергрупп, вероятнее всего, унаследованы от него. Признаки, которые встречаются лишь в одной-двух группах, скорее всего, приобретены ими независимо и позднее. Хорошая иллюстрация последнего варианта – хлоропласты, которые встречаются только у растений и хромальвеолят. Они возникли в результате эндосимбиоза, но у общего предка эукариот их не было.
Филогенетика говорит нечто поразительное о том, что было внутри клетки общего предка: было все, кроме хлоропластов. С вашего позволения, я кратко освещу несколько моментов. Мы знаем, что общий предок имел ядро, где хранилась ДНК. Ядро обладало сложной структурой, которая затем стала общей для всех эукариот. Оно окружено двойной мембраной, даже целым рядом уплощенных полостей, которые переходят в другие клеточные мембраны. Ядерная мембрана пронизана замысловатыми белковыми порами и покрыта эластичной сетью, которая поддерживает форму ядра. Внутри ядра присутствуют структуры, универсальные для эукариот, например ядрышко. Стоит подчеркнуть, что множество ключевых белков этих комплексов консервативны – они почти не отличаются у разных супергрупп организмов. Таковы, например, гистоновые белки, на которые накручиваются молекулы ДНК. Все эукариоты имеют линейные хромосомы с колпачками теломеров на концах, которые не дают хромосомам “растрепаться”, как случается с кончиками шнурков. Гены эукариот имеют фрагментарное строение: короткие участки кодирующей ДНК перемежаются длинными некодирующими последовательностями – интронами. Интроны вырезаются перед тем, как с РНК считывается белок. Удаление этих фрагментов осуществляется с помощью механизма, общего для эукариот. Даже расположение интронов нередко консервативно: вставки обнаруживаются на одном и том же месте внутри последовательности общего для разных групп эукариот гена.