Восхождение на гору Невероятности — страница 34 из 57


Рис. 5.27. Умная схема “подключения” омматидиев в суперпозиционном фасеточном глазу.


Понятно, почему такой глаз называется суперпозиционным, хотя в строгом смысле им не является. При истинном наложении с использованием сложных линз и зеркал проходящий через соседние фасетки свет суммируется, и все фотоны, которые излучают голова или хвост дельфина, оказываются в одних и тех же соответствующих этим участкам местах. При нейросуперпозиционном механизме фотоны по‐прежнему попадают в разные места, как и в аппозиционном глазу. Но благодаря точно рассчитанному переплетению нервных волокон, ведущих к мозгу, сигналы от них сходятся.

Вы не забыли, как Нильссон оценил темпы эволюции глаза камерного типа? По меркам геологии, это произошло едва ли не в один краткий миг! Найти окаменелости, по которым можно было бы проследить переходные стадии, – редкое везение. Для фасеточных или каких‐нибудь других типов глаз точных оценок сделано не было, но не думаю, что они развивались намного медленнее. Глаза слишком мягкие для того, чтобы окаменеть, поэтому у нас мало надежды встретить сохранившиеся с доисторических времен фрагменты глаз. Исключение составляют фасеточные глаза, поскольку значительная часть деталей их строения просматривается в аккуратном рисунке фасеток. На рис. 5.28 показан глаз трилобита девонского периода, жившего почти 400 миллионов лет назад. На вид он развит в той же степени, что и современный фасеточный глаз. Раз время, которое потребовалось для его формирования, в геологических масштабах ничтожно мало, то чего же еще ожидать?

Вся эта глава строится вокруг тезиса о легкой и быстрой эволюции глаз, образовавшихся буквально в мгновение ока. В самом начале я сослался на мнение специалистов, которые полагают, что глаза эволюционировали независимо в разных группах животных по меньшей мере сорок раз. На первый взгляд, подборка любопытных экспериментальных данных, опубликованная группой швейцарских коллег при участии профессора Вальтера Геринга, оспаривает этот тезис. Поясню в двух словах, что именно они обнаружили и почему их работа не противоречит выводам, которые мы делаем в этой главе. Но прежде я должен принести извинения за досадное и крайне неумное соглашение генетиков о названиях генов. Формирование глаз у плодовых мушек дрозофил регулирует так называемый ген eyless (ген безглазия)! Чудненько, не правда ли? Но в данном случае вопиющий терминологический ляпсус, сбивающий людей с толку, вызван довольно простой и даже интересной причиной. О действии гена мы узнаем по эффекту его мутации. Есть ген, в результате мутации которого рождаются мухи без глаз. Отсюда название места в хромосоме, занимаемого этим геном, – локус eyeless (безглазия) (locus на латыни означает “место”, в генетике это участок хромосомы, где расположены альтернативные формы данного гена). Но говоря о локусе eyeless, мы вообще‐то имеем в виду нормальный, неповрежденный ген, который занимает это место. Это и породило парадоксальное название гена, регулирующего развитие глаз. Можно было бы и динамик считать устройством беззвучия, ведь если отсоединить его от приемника, радио замолчит. Не могу с этим согласиться. Я бы переименовал ген eyeless в “ген eyemaker” (глазоделательный ген), но так мы тоже запутаемся. Слово “безглазие” мне решительно не по душе, я предлагаю использовать узнаваемую аббревиатуру названия этого гена: ey[13].


Рис. 5.28. Уже 400 миллионов лет назад фасеточные глаза были хорошо развиты: глаз трилобита девонского периода.


На сегодняшний день общеизвестно, что все клетки организма животного содержат полный набор генов, но в каждом отдельном органе и в каждой части тела находятся во “включенном” состоянии, или, другими словами, экспрессируются, лишь немногие из них. Именно поэтому печень и почки при одинаковом наборе генов ведут себя по‐разному. У взрослой дрозофилы ген ey, как правило, экспрессируется только в клетках головы, поэтому глаза там и развиваются. Георг Хайдер, Патрик Каллер и Вальтер Геринг придумали лабораторную методику активирования гена ey в совершенно не связанных с головой частях тела. Они сыграли с дрозофилой злую шутку – нашли способ запустить работу этого гена в ее антеннах, крыльях и конечностях. Результат был ошеломляющим – у подопытной особи полностью сформировались фасеточные глаза на антеннах, крыльях, ногах и в других местах (рис. 5.29). Эктопические глазки оказались меньше нормальных, но, как и нормальные фасеточные, имели множество правильно сформированных омматидиев. Они даже функционировали. Трудно сказать, чтó с их помощью видели мухи, но, судя по электрическим сигналам, поступавшим от нижней зоны омматидия, на свет они реагировали.

Это первый феноменальный результат. Второй поражает еще больше. У мышей есть ген, который называется small eye “маленький глаз”, а у человека этот ген называется aniridia – “ген аниридии”. Они тоже обязаны своими названиями генетикам – и негативному воздействию мутантных вариантов этих генов на строение организма. Их мутации приводят к недоразвитию и к полному отсутствию глаз или их структурных элементов. Сотрудники той же швейцарской лаборатории Ребекка Квиринг и Уве Вальдорф обнаружили, что последовательность ДНК в этих генах млекопитающих почти такая же, как в гене ey дрозофилы. Это означает, что их предки, столь же далекие от современных животных, как млекопитающие и насекомые, передали потомству этот ген. Мало того, в обеих филогенетических группах животных продукт этого гена, по‐видимому, принимает большое участие в развитии глаз. Третий феноменальный результат выглядит не менее эффектно. Геринг и его коллеги умудрились подсадить в клетки эмбриона дрозофилы мышиный ген. Невероятно, но факт – мышиный ген вызвал образование эктопических глаз у плодовой мушки. На рис. 5.29 (внизу) показан маленький фасеточный глаз, который вырос на ножке дрозофилы под влиянием мышиного эквивалента гена ey. Примечательно, что это не мышиный глаз, а присущий насекомому фасеточный. Продукт гена мыши просто запустил механизм формирования глаз в организме дрозофилы. Очень похожая последовательность ДНК была обнаружена и в генах моллюсков, морских червей немертин и асцидий. Ген ey, судя по всему, универсален для животных, и можно считать общей закономерностью то, что донорский ген из одного уголка царства животных способен стимулировать развитие глаза у реципиента, находящегося на совсем другом его краю.

Как эти фантастические эксперименты пересекаются с выводами, которые мы делаем в этой главе? Может, напрасно мы думаем, что могло быть сорок разных вариантов независимой эволюции глаза? Я считаю, что не напрасно. По крайней мере, не дезавуирована идея легкого и быстрого развития глаз. Наверное, эти опыты действительно показывают, что общие предки дрозофилы, мышей, человека, асцидий и прочих живых существ могли видеть. Их общий древний предок обладал каким‐то зрением, и его глаза, какими бы они ни были, развивались под влиянием последовательности ДНК, сходной с последовательностью гена ey. Но особенности глаза, характерные для конкретной группы животных – форма глаз различных типов, строение сетчатки, хрусталика и зеркал – эволюционировали быстро и независимо, так же как быстро и независимо происходил в разных группах животных выбор между простым и сложным глазом, а при наличии сложного сложного – между аппозиционным и двумя вариантами суперпозиционного. Об этом говорит разнообразие механизмов и систем, которые возникали в царстве животных тут и там без всяких закономерностей – можно сказать, по прихоти судьбы. В сущности, у животных чаще можно заметить нечто общее в глазах даже не близких, а более дальних родственников. То, что общие предки этих животных явно имели глаза того или иного типа, и то, что пути эмбрионального развитие этих глаз имели достаточно общего, чтобы регулироваться одинаковыми генами, никак не противоречит нашему выводу.


Рис. 5.29. Эктопические глаза дрозофилы, появившиеся в результате научного эксперимента; глаз на фото внизу образовался под влиянием мышиного гена.



Рис. 5.30. Глазной район горы Невероятности: ландшафт эволюции глаз в интерпретации Майкла Лэнда.


Когда Майкл Лэнд согласился прочесть черновой вариант этой главы и высказал свои замечания, я попросил его нарисовать иллюстрацию к теме Глазного района горы Невероятности; на рис. 5.30 представлена его “карта”. Метафоры обычно применимы только к конкретным ситуациям, поэтому иногда приходится вносить кое‐какие поправки и даже вовсе вырезать метафору из своего рассказа. Читатель уже не раз имел случай заметить, что гора Невероятности представляет собой целую горную страну с множеством пиков, хотя мы говорим о ней как об одиночной вершине – как, например, о горе Юнгфрау.

Дэн Нильссон, еще один великий знаток зрения животных, тоже прочел черновик этой главы и обратил мое внимание на, пожалуй, самый поразительный пример специфической эволюции глаза, тем самым подытожив главную идею. Трижды, у трех различных групп рыб, абсолютно независимо развилось, скажем так, четырехглазие. Самый выдающийся представитель рыб с четырьмя глазами – батилихнопс (Bathylychnops exilis, рис. 5.31). Его обычные глаза смотрят вверх и в стороны, как у всех рыб. Но кроме них батилихнопс имеет вторую пару глаз, которые умещаются в границах основных глаз и смотрят исключительно вниз. Хотелось бы знать, что они там видят? Возможно, батилихнопс опасается, что хищник подберется снизу. Для нас самым интересным является следующее: в эмбриогенезе вторая пара глаз развивается совсем не так, как основные глаза, хотя можно предположить, что их развитие регулируется каким‐то вариантом гена ey. В частности, как написал мне доктор Нильссон, “этот вид заново изобрел для себя второй хрусталик, хотя один у него уже был. Хороший довод в пользу того, что хрусталику не так уж трудно было сформироваться”.