Восхождение на гору Невероятности — страница 40 из 57

Это вовсе не означает, что не встречается асимметрия левой и правой сторон. Бывает, что мутации сильнее проявляются с одной стороны. Иногда по ряду причин асимметричные мутации даже желательны – скажем, брюшко рака-отшельника должно быть приспособлено к форме витой раковины, – поэтому естественный отбор к ним благосклонен. В 4 главе мы говорили о камбаловых рыбах (рис. 4.7), к ним относятся собственно камбала, морской язык и палтус. Некогда левый бок камбалы оказался у нее внизу, и левый глаз переместился на прежний правый бок, превратившийся в верхнюю часть туловища. Такой же перестройке подверглись и морские языки, только некоторые их виды лежат на правом боку, что указывает на вероятность, хотя и не стопроцентную, независимого формирования этой анатомической особенности. Изначально левый бок камбалы выполнял функциональную роль нижней, придонной стороны – как и следовало ожидать, он стал более плоским и обрел серебристую окраску. Бывший правый бок – на практике верх туловища – обращен к небу, поэтому он выпуклый и пестрый, под цвет дна. Унаследованные от предков дорсальная (спинная) и вентральная (брюшная) зоны поменяли свою функциональную роль и стали левым и правым боками. Соответствующие этим сторонам спинной и анальный плавники стали почти одинаковыми, просто левым и правым, хотя у других рыб они, как правило, выглядят совершенно по‐разному. Заново обнаруженная зеркальная (право-левая) симметрия у камбаловых рыб подчеркивает могущество естественного отбора в противовес универсальным и нерушимым анатомическим планам[20]. Любопытно было бы взглянуть – и это осуществимо, – воспроизводятся ли автоматически проявления мутаций у камбалы слева и справа (спереди и сзади, если по‐старому). Или они все еще воспроизводятся одинаково на прежних левой и правой сторонах, то есть сверху и снизу? Почему столь различны оказались серебристая и пестрая стороны туловища камбалы – вопреки неблагоприятному старому эмбриональному калейдоскопу или при содействии нового, благоприятного? В любом случае ответ на этот вопрос подтверждает, что можно говорить о “благоприятном” и “неблагоприятном” для эволюции эмбриональном развитии. И еще раз спрошу: можно ли предположить, что существует естественный отбор более высокого уровня, который делает эмбриональное развитие еще “более дружественным” для определенных направлений эволюции?

В контексте этой главы на первый план выходит одна особенность зеркальной (право-левой, или билатеральной) симметрии – мутация сказывается не в одной зоне организма животного, а сразу в двух одновременно. Это я и называю калейдоскопической эмбриологией – мутации будто отражаются в зеркалах. Но билатеральная симметрия – не единственный вариант. Мутационные зеркала могут располагаться и в других плоскостях. Биоморфы на рис. 7.1с симметричны как по ширине, так и по длине. Словно бы установили перпендикулярно два зеркала. Реальные создания с “двухзеркальной” эмбриологией встречаются в природе гораздо реже, чем симметричные относительно одной плоскости. Таков, например, венерин пояс, дивный мираж, лентовидный планктонный организм, который принадлежит к типу гребневиков, или ктенофор (тип Ctenophora)[21]. Более распространены эмбриологические калейдоскопы с четырьмя плоскостями симметрии по четырем направлениям, как на рис. 7.1d. Такая геометрия присуща многим медузам, которые относятся к типу книдарий (Cnidaria). Представители этого типа либо плавают в море (как сами медузы), либо, как актинии, цепляются за морское дно, поэтому не испытывают сжатия по оси, характерного для ползающих существ – например, червей. У них были все основания сформировать различающиеся верхнюю и нижнюю стороны тела, но по направлениям от переднего конца к заднему и справа налево никакие силы не действуют. Поэтому, если смотреть сверху, непонятно, с чего бы какой‐нибудь одной стороне тела отличаться от любой другой – и они действительно обладают радиальной симметрией. Изображенные на рис. 7.2 медузы обладают четырехлучевой радиальной симметрией, но, как мы еще увидим, осей может быть больше. Автор этого и многих других рисунков в этой главе – знаменитый немецкий зоолог и талантливый художник-иллюстратор Эрнст Геккель[22].


Рис. 7.2. Ставромедуза, животное с четырехлучевой симметрией. Обратите внимание на зеркальную симметрию всех лучей, таким образом, максимальное число отражений – восемь.


Симметрия такого типа приводит к бесконечному разнообразию форм, но с одним ограничением, которое, впрочем, как и “калейдоскоп”, может оказаться полезным. Случайные изменения будут затрагивать одновременно все четыре сектора. Поскольку четырежды воспроизведенные элементы часто еще и зеркально отражаются, эффект каждой мутации повторяется восемь раз. Это хорошо видно на примере ставромедузы (рис. 7.2): на концах ее “рук” имеются щупальца, собранные в кисточки, по две кисточки на каждой руке, всего восемь. Можно предположить, что эффект мутации, влияющей на форму кисточки, воспроизвелся бы восемь раз. По геометрии биоморфов, показанных на рис. 7.3, можно судить о том, как выглядела бы фигура с радиальной симметрией того же типа без дополнительного удвоения. Вряд ли вы найдете животное с симметрией такого типа, столь похожее на свастику или на остров Мэн, однако на рис. 7.3 изображено нечто в этом роде. Это сперматозоид речного рака.

Большинство животных с лучевой симметрией обладает еще и зеркальной симметрией относительно лучей, сколько бы их ни было. Для нас имеет значение кратность воспроизведения эффекта одной мутации, поэтому мы должны посчитать лучи и умножить это число на два. Можно предположить, что у типичной морской звезды с пятью зеркально-симметричными концами (“руками”) каждая мутация “отражается” десять раз.

Геккель особенно увлекался рисованием одноклеточных организмов, таких как диатомеи (рис. 7.4). Перед нами калейдоскопические узоры, полученные “с помощью” двух, трех, четырех, пяти и более “зеркал” в сочетании с отражением левой и правой сторон каждой “руки”. При всех типах симметрии для эмбрионального развития характерна повторяемость эффектов мутаций в нескольких определенных зонах. Например, пятилучевая звезда в верхней части рисунка 7.4 могла мутировать так, что ее концы стали острее. Тогда все пять лучей должны заостриться синхронно. Нам не нужно было бы сидеть и ждать, когда произойдут пять независимых мутаций. Возможно, изменение количества зеркал – это тоже мутация, хотя гораздо более редкая. Может, когда‐то в результате случайной мутации трехконечная звезда превратилась в пятиконечную.


Рис. 7.3. Аксиальная симметрия: сперматозоид речного рака.


Рис. 7.4. Диатомовые водоросли, микроскопические одноклеточные растения, примеры калейдоскопических отражений в одной группе организмов с разным количеством зеркал.


На мой взгляд, в мельчайшей категории калейдоскопов лидирует радиолярия, член другой планктонной команды, которой Геккель уделил особое внимание (рис. 7.5). В этой группе мы тоже видим симметрию разного порядка – подобные картинки можно было бы получить с двумя зеркалами, тремя, четырьмя, пятью, шестью и даже больше. Микроскопические меловые скелеты радиолярий так изысканны и гармоничны, что невольно вспоминаешь о калейдоскопической эмбриологии.

Калейдоскопический шедевр с рис. 7.6 достоин карандаша Бакминстера Фуллера, архитектора и мечтателя; однажды, когда ему уже перевалило за девяносто, мне посчастливилось попасть на его лекцию – это было трехчасовое завораживающее шоу без единой паузы. Прочность изображенной здесь конструкции, как и геодезических куполов Фуллера, обеспечивается строгой геометрией ее треугольных компонентов. Это, несомненно, продукт калейдоскопической эмбриологии высшего порядка. Эффект любой отдельно взятой мутации отразится многократно – сколько раз, по картинке понять нельзя. Другие радиолярии Геккеля химики используют в кристаллографии как примеры известных с древних времен правильных геометрических тел – октаэдра (включает 8 треугольных граней), додекаэдра (12 треугольников) и икосаэдра (20 треугольников). Даже Дарси Томпсон (мы познакомились с ним, когда обсуждали раковины улиток) доказывал, что в развитии безупречных форм радиолярий больше от процесса роста кристаллов, нежели от эмбриогенеза в общепринятом смысле слова.


Рис. 7.5. Радиолярия. Еще примеры калейдоскопических отражений с разным количеством зеркал в группе микроскопических одноклеточных организмов.


Рис. 7.6. Изысканный скелет крупной радиолярии.


Так или иначе, многоклеточные организмы и одноклеточные – такие как диатомеи и радиолярии – в эмбриональном периоде развиваются совершенно по‐разному, и если между этими калейдоскопическими процессами есть какое‐то сходство, то по чистой случайности. Мы рассматривали пример многоклеточного животного, медузы, с четырехлучевой симметрией. Число лучей четыре и кратное четырем свойственно медузам, это легко реализуется за счет дупликации некоторых процессов в ходе эмбрионального развития. Трахимедузы из класса гидроидных (класс Hydrozoa) обладают шестилучевой симметрией (рис. 7.7)[23].


Рис. 7.7. Медузы с шестилучевой симметрией.


Рис. 7.8. Иглокожие из разных групп; слева направо: офиура, морская звезда (с неодинаковыми лучами – возможно, из-за травмы и последующего восстановления), морская лилия, плоский морской ёж.


Иглокожие – самые типичные образчики пятилучевой симметрии; к этому обширному типу (тип Echinodermata) колючих обитателей морей относятся морские звезды, морские ежи, офиуры, голотурии (морские огурцы) и морские лилии (рис. 7.8)[24]. Есть мнение, что их древними предками были животные с трехлучевой симметрией, но вот уже свыше полумиллиарда лет они живут с пятью лучами, и логично предположить, что пятилучевая симметрия составляет основу одной из наиболее консервативных схем строения тела, столь милых глобальному мышлению некотор