раведливо при сравнении с каким‐то абсолютным стандартом. На деле, впрочем, отбор не всегда настолько эффективен, потому что их жизни всегда угрожают особи других видов, которые тоже эволюционируют и становятся более жизнеспособными. Можно выработать качества, которые помогают спастись от зубов и когтей хищника, но ведь и хищники тоже совершенствуют свои охотничьи качества, так что в конечном итоге ничего не выиграешь. Своего рода “эволюционная гонка вооружений” – тема интересная, но мы забегаем вперед.
Смоделировать на компьютере искусственный отбор не так сложно, и биоморфы – прекрасный тому пример. Моя мечта – воспроизвести еще и естественный отбор. В идеале я хотел бы создать условия для эволюционной борьбы, чтобы возникающие на экране “хищники” и “жертвы” побуждали друг друга к прогрессивному развитию, а мы просто наблюдали бы за их соперничеством. К сожалению, это непростое дело, и вот почему. Я говорил, что отдельные особи из потомства обречены на гибель, и вроде бы легко спровоцировать их насильственную смерть. Но цифровая тварь должна погибнуть от каких‐либо нестандартных дефектов – например из‐за коротких ног, не позволяющих ей убежать от хищника, – тогда смерть на экране будет выглядеть натурально. У некоторых насекомоподобных биоморфов с рис. 1.16 есть похожие на ножки отростки. Но они не пользуются своими “ножками”, и хищников вокруг них нет. Нет и жертв или растительной пищи. В их мире не бывает ни болезней, ни плохой или хорошей погоды. Теоретически мы могли бы включить любой из этих факторов риска. Но запрограммированная угроза будет столь же искусственной, как и сам искусственный отбор. Нам придется что‐то предпринять – скажем, постановить, что длинным и тонким биоморфам легче уйти от преследования, чем коротким и толстым. Велеть машине измерить биоморфы и отобрать для дальнейшего разведения самых поджарых и голенастых – дело нехитрое. Но тогда процесс эволюции лишится интриги. Мы просто увидим, что по мере смены поколений особи становятся все более долговязыми. С тем же успехом мы могли бы просто на глазок прикинуть, какие из биоморфов тоньше и длиннее. Нет спонтанности, характерной для естественного отбора, которой можно было бы достичь при адекватной имитации.
В естественных условиях селекционный процесс намного сложнее. В каком‐то смысле он очень запутан, но с другой стороны – предельно прост. Для начала прогресс в каком‐то одном направлении – в частности, в направлении увеличения длины ног – возможен до определенного предела. В живой природе ноги могут оказаться и чересчур длинными. Они больше подвержены переломам, да и через подлесок продираться тяжело. Слегка пораскинув мозгами, мы можем предусмотреть в программе переломы и кусты. Можно встроить элементы физики перелома – найти способ отобразить линии напряжения, прочность на разрыв, коэффициент упругости; если разобраться в сути явления, можно воспроизвести что угодно. Проблему для нас представляет то, чего мы не знаем и о чем не подумали, то есть почти все. Мы упускаем из виду не только оптимальную длину конечностей и бесчисленное множество факторов, от которых она зависит. Мало того, длина ног – лишь один из многих взаимосвязанных признаков, который взаимодействует с другими признаками ног, а также с массой признаков других частей тела, влияющих на выживаемость особи. Это и толщина ног, и их жесткость, хрупкость, способность выдерживать вес, разница по толщине вверху и внизу, количество суставов и собственно ног. И это только то, что касается конечностей. Выживет животное или нет, зависит также от всех остальных частей и элементов его организма.
Пока программист пытается ввести все параметры в теоретическую задачу выживаемости компьютерных зверей, он вынужден сам принимать судьбоносные решения. По-хорошему, надо бы воспроизвести все физиологические и экологические условия, включая имитации хищников, жертв, растений и паразитов. В свою очередь, все эти виртуальные виды должны обладать способностью к изменчивости. Самый простой способ избавиться от необходимости думать самим – это вовсе отказаться от компьютера и смастерить трехмерных роботов, которые гонялись бы друг за дружкой в реальном трехмерном мире. Но тогда дешевле было бы сдать компьютер в утиль и наблюдать за живыми зверями и растениями – то есть вновь оказаться на исходной позиции! Доля шутки тут меньше, чем кажется. Я еще вернусь к этому позже. Тем не менее, мы можем еще кое‐что сделать на компьютере, хотя и не с биоморфами.
Биоморфы трудно поддаются естественному отбору в основном потому, что они состоят из светящихся пикселей, расположенных на плоском экране. Двухмерный мир во многих отношениях не пригоден для отображения физических закономерностей реальной жизни. Остроту зубов хищника и прочность защитного панциря жертвы, мышечную силу нападающего хищника и смертоносную силу яда – все эти свойства не передашь двухмерными пикселями. Самих хищников и их жертвы можно показать на плоском экране естественным путем, без особых ухищрений, но можно ли рассчитывать на отображение их реальной жизни? По счастью, можно. Я уже говорил о паутине в связи с псевдомоделями природных ловушек. Пауки, как и все представители животного мира, обладают трехмерными телами и живут в обычном, сложно устроенном физическом пространстве. Но их хищнические повадки отличаются одной особенностью, чрезвычайно удобной для представления на плоскости. Типичная круговая паутина – это в сущности плоская фигура. Насекомые, которые угодили в сети, перемещаются по третьей оси, но в критический момент, когда они попадают в ловушку или вырываются на свободу, драма разворачивается в двухмерной плоскости паутины. Лучшего примера для красивой имитации естественного отбора на плоском экране монитора и не подберешь. Следующую главу мы большей частью посвятим паучьим сетям: начнем с обсуждения настоящей паутины, а затем перейдем к ее компьютерным аналогам и превращениям в процессе виртуального “естественного отбора”.
Глава 2Шелковые путы
Чтобы систематизировать наши представления о жизни какого‐либо существа, полезно напрячь воображение – даже позволить себе поэтическую вольность – и подумать, с каким комплексом задач и препятствий сталкивается это существо или, если угодно, его гипотетический “создатель”. Первым делом надо поставить исходную задачу и поискать разумные решения. Затем можно посмотреть, чем, собственно, занимаются наши подопечные. После этого мы, вероятно, увидим, какие еще проблемы встают перед животным данного вида, и так далее. Во второй главе “Слепого часовщика”, посвященной летучим мышам и их искусному владению методами эхолокации, я так и делал. Теперь я последую той же логике, чтобы изучить функции паутины. Отметим, что, изучая один вопрос за другим, мы не прослеживаем весь жизненный цикл живого существа. Если мы и говорим о продвижении во времени, то по эволюционной временной шкале, но иногда мы будем перемещаться не по оси времени, а по логической цепочке.
Наша первейшая задача – найти эффективный способ ловли насекомых для пропитания. Один из вариантов – летать побыстрее. Подняться в воздух, как сама потенциальная добыча. Летать как можно быстрее с разинутым ртом, зорко вглядываясь в цель. Это подходит стрижам и ласточкам, но требует немалых затрат на оснащение для скоростных полетов и маневрирования, а также “умных” систем навигации. Так действуют и летучие мыши, только они охотятся ночью и находят цель с помощью звукового эха, а не световых лучей.
Совершенно иной подход – “сидеть и выжидать”. Это излюбленная тактика богомолов, хамелеонов и других ящериц, которые в процессе эволюции независимо и конвергентно приобрели общие с хамелеоном черты и повадки; практически сливаясь с окружающей средой, держа наготове язык или лапы, они передвигаются тихо-тихо и крайне медленно, прежде чем резко броситься в атаку. Радиус действия хамелеонова языка позволяет ему ловить мух на расстоянии, сравнимом с размерами его собственного тела. Богомол тоже достает добычу, которая находится на таком же относительном удалении от него, передними хватательными ножками. Казалось бы, можно усовершенствовать эту модель и еще больше увеличить “дальнобойность”. Но если язык и ноги будут намного длиннее туловища, их монтаж и обслуживание обойдутся чересчур дорого, и даже лишние мухи, которых удастся поймать, не окупят затрат. Нельзя ли расширить зону охоты более экономичным способом?
Почему бы не сплести сеть? Для сети понадобится какой‐то материал, и за него придется заплатить. Но в отличие от языка хамелеона, сеть неподвижна, поэтому не потребуется наращивать мышечную ткань. Тканью из тончайшего, как паутинка, недорогого материала можно покрыть огромную площадь. Если переработать в шелк белки мяса, которые в других условиях пошли бы на строительство тканей мощных лап и языка, можно намного превысить радиус действия языка хамелеона. Ничто не помешает нам с помощью такой бюджетной сетки, сделанной из секрета маленьких желез, охватить площадь в сто раз превышающую площадь тела.
Шелк – излюбленный материал членистоногих, одного из основных типов царства животных[2], включающий в себя и насекомых, и пауков. Гусеницы свисают с веток деревьев на тонкой шелковой нитке. Муравьи-портные, держа челюстями своих личинок и действуя ими, словно ткацкими челноками, сшивают листья шелковым секретом, который те выделяют (рис. 2.1). Многие гусеницы, прежде чем превратиться во взрослое крылатое насекомое, окукливаются, заворачиваясь в шелковый кокон. Коконопряды душат деревья тонкой паутиной. Один одомашненный тутовый шелкопряд для постройки кокона прядет нитку длиной чуть ли не в милю. Но несмотря на то, что на тутовых шелкопрядах держится все наше производство шелка, самые искусные прядильщики и ткачи во всем животном мире – это пауки, и странно, что люди больше не находят применения паучьему шелку. Его использовали для нитей перекрестия в окулярах микроскопов. Зоолог и художник Джонатан Кингдон в замечательной книге “Человек, который сделал себя сам” (Jonatan Kingdon,