Ни в каком другом аспекте это согласование не является столь важным, как во время выравнивания – последнего маневра, выполняемого перед посадкой, когда нос задирается вверх и самолет постепенно снижается, пока его шасси не коснутся полосы. Коммерческие пилоты очень гордятся гладкостью своих выравниваний, существует несколько способов совершить этот маневр как можно лучше. Некоторые летчики предпочитают мощное, ураганное выравнивание, тогда как другим нравится более медленное, осторожное, продолжающееся вплоть до самого касания.
Условия посадки могут очень сильно варьировать в зависимости от скорости и направления ветра, уклона взлетно-посадочной полосы, снега, дождя и даже от высоты аэропорта над уровнем моря. Пилоты используют свои навыки и способность оценить ситуацию, чтобы выполнить такое выравнивание, которое приведет к наиболее мягкому касанию.
Но не с индикатором на лобовом стекле. Для Боба и HudView единообразие важнее изящества или безупречности. «Система должна делать это каждый раз одинаково… Мы не можем посмотреть на нее и сказать: "Итак, это пилот Джон Доу, он будет выравнивать самолет вот так, а кто-то еще… по-другому"».
Индикатор на лобовом стекле имеет определенные параметры, такие как точность и повторяемость, которые нужно оптимизировать для сертификации в Федеральном управлении гражданской авиации. «Это как вдевать нитку в иголку», – говорит Боб. Например, в аэропортах, расположенных высоко в горах, воздух разрежен, поэтому самолет снижается относительно быстро. «Тогда нужно сократить время выравнивания, и человек должен иметь право сделать это».
Некоторые пилоты ощущают, что благодаря индикатору на лобовом стекле их посадки становятся более систематическими. «Притереть самолет [совершить идеально гладкую посадку] – это здорово, – говорит Боб, – но потом ты сразу же понимаешь, чем придется поступиться: область возможного касания будет большой, потому что посадки неодинаковы». В плохую погоду этот компромисс выражен еще сильнее: «Наше управление выравниванием при посадке категории III позволяет уверенно сажать самолет… при этом оно каждый раз сажает его в определенной точке полосы и жертвует ради этого мягкостью касаний». Очередные компромиссы: «Однообразие приземлений против мягкости».
Чтобы оптимизировать выравнивание, пилот может решить, что не стоит слепо следовать за точкой наведения ИЛС. В таком случае летчик «может просто немного потянуть рычаг назад, поднять [нос] точно. Он знает, что если сделает так, то получится действительно хорошая посадка». Вместо того чтобы рассматривать такое расширение возможностей как обходное решение для его прекрасно разработанной и запрограммированной точки наведения, Боб считает это преимуществом ИЛС – человек может изменить рекомендованную траекторию полета согласно своим приоритетам, желаниям и умениям в отдельно взятой ситуации. «Я легко могу скорректировать выравнивание – так представляет себе Боб слова пилота, – если чуть-чуть приподниму вектор направления полета» (имеется в виду более мягкая посадка). Эта возможность контроля процесса посадки со стороны пользователя может оказаться самым значительным аспектом разработки ИЛС.
В 2009 году Фонд безопасности полетов, независимая некоммерческая организация, провел изучение потенциальной безопасности индикаторов на лобовом стекле. Сотрудники фонда рассмотрели почти тысячу аварий с участием коммерческих и корпоративных авиалайнеров за двенадцать лет (1995–2007) и попытались определить, какое влияние мог бы оказать ИЛС при его наличии. Они пришли к выводу, что современные, конформные индикаторы с широким полем зрения могли предотвратить 38 % аварий, разобранных в этом исследовании, и почти 70 % аварий при взлете и посадке. ИЛС обеспечивал безопасность во многих отношениях, но самую главную роль играл вектор направления полета. За ним следовали ленты ошибок ускорения и скорости, управление выравниванием и точка наведения.
Таким же образом можно рассмотреть последние аварии, получившие большой резонанс, и увидеть, как индикатор на лобовом стекле мог бы предотвратить их. В 2009 году самолет авиакомпании Colgan Air разбился в Буффало, потому что пилоты позволили самолету замедлиться вплоть до смертельно опасного сваливания. Если бы они использовали ИЛС, они могли бы заметить падение скорости и энергии самолета достаточно быстро и имели бы бо́льший запас времени, чтобы решить эту проблему. Катастрофу самолета Turkish Airlines в Амстердаме в 2009 году можно было бы предотвратить, если бы экипаж вовремя заметил, что система автоматической посадки не функционирует должным образом из-за неисправного сенсора и, как и во время катастрофы самолета Colgan Air, обратил бы внимание на падение энергии самолета. В катастрофе самолета авиакомпании UPS Airlines в Бирмингеме, штат Алабама, когда пилоты провели «неточный» ночной заход на посадку в «черную дыру» и ударились о склон холма, они могли бы более четко видеть свой маршрут к взлетно-посадочной полосе, если бы использовали ИЛС.
Как мы уже рассказывали ранее, летом 2013 года «Боинг-777» компании Asiana Airlines заходил на посадку в Сан-Франциско. В тот день пилоты должны были выполнить свою самую элементарную задачу – приземлиться в современном аэропорту в ясную погоду. Экипаж самолета не имел индикаторов на лобовом стекле, а стандартный глиссадный радиомаяк аэропорта не работал, хотя его визуальный эквивалент, система фиксированных огней на взлетно-посадочной полосе, которая показывает положение самолета относительно траектории полета по глиссаде, функционировала.
Самолет вообще не был стабилен во время своего последнего захода на посадку: вначале он находился слишком высоко по сравнению с предполагаемой глиссадой захода, а потом – слишком низко. Вначале он летел слишком быстро, а потом – слишком медленно. Самолет чересчур рано коснулся земли; задняя часть фюзеляжа задела покрытие, самолет занесло, и начался пожар, из-за которого погибли трое, десятки человек пострадали, а самолет был разрушен. В практике коммерческих авиалиний США это стало первым за четыре с половиной года авиапроисшествием, повлекшем человеческие жертвы.
Все пилоты должны уметь совершить посадку самолета визуально в ясную погоду. Тем не менее пилоты авиакомпании Asiana Airlines не смогли следовать по своей траектории полета с нужной скоростью – делать то, чему учат любого начинающего пилота. Один из них сказал, что нервничал, потому как посадка проходила без поддержки глиссадного радиомаяка. Более того, авиакомпания побуждала пилотов задействовать «автоматизацию по максимуму», что многие понимали как использование системы автоматической посадки. Даже если и так, то пилоты неадекватно понимали логику функционирования автоматов тяги. На тренировке правила управления ими были пропущены инструктором как нечто докучливое и непонятное. Можно представить себе, как инструктор печально произносит: «Иногда это случается».
Пилоты Asiana Airlines опасались перейти на ручное управление, боясь наказания, если что-то по их вине пойдет не так. В 2012 году только в 17 % посадок самолетов этой авиакомпании использовалась система автоматической посадки, но в 77 % посадок вручную пилот брал на себя управление, только опустившись до высоты ниже 300 м над взлетно-посадочной полосой, когда бо́льшая часть работы уже была выполнена машиной. Как говорилось в отчете о расследовании катастрофы, «из-за того, что пилоты не имеют возможности чаще управлять самолетом вручную, их навыки ухудшаются».
Возможно, индикатор на лобовом стекле предупредил бы пилотов Asiana Airlines о снижении энергетического уровня самолета, дав им достаточно времени на то, чтобы решить проблему? А может быть, приближенные к ручному управлению полеты с ИЛС предотвратили бы ухудшение их навыков пилотирования?
И еще более полемический вопрос – мог ли ИЛС во время полета на эшелоне помочь пилотам рейса 447 авиакомпании Air France скорректировать высоту самолета и предотвратить ставшее гибельным сваливание?
Я не ставил своей целью давать оценку индикаторам на лобовом стекле или рассказывать об их преимуществах. ИЛС не являются панацеей для решения проблем автоматизации в кабине пилотов. Никакой индикатор, например, не предотвратил бы ошибки пилотов Asiana Airlines с автоматами тяги. Повышает ли ИЛС безопасность с точки зрения статистики, станет понятно со временем.
Я, скорее, говорю о том, что индикатор на лобовом стекле представляет собой новый подход к проблеме. Это нововведение, которое при всей своей несомненной принадлежности к высоким технологиям позволяет людям играть роль в системе. Теперь пилоты, вместо того чтобы откинуться на спинку кресла и следить за процессом, вовлечены в него. Повторюсь, иногда большая степень автоматизации на самом деле является менее мудрым решением. Порой требуется более современная, передовая технология, включающая человека в глубину процесса. Сидя в самолете, совершающем посадку в облачный день, чего бы вы хотели – чтобы ваш пилот сидел, откинувшись на спинку кресла, и наблюдал за работой компьютера или держал в руках штурвал?
Пример индикаторов на лобовом стекле показывает, что, пытаясь решить проблемы с автоматизацией, возникающие в авиации и других отраслях, мы должны искать новаторские разработки, которые соединяли бы людей и машины, а не просто добавлять новое оборудование и программное обеспечение. Некоторые из этих разработок получили название «информационная автоматизация»: она в новых формах снабжает данными пилотов-людей и противопоставлена «управляющей автоматизации», которая на самом деле ведет вместо них самолет.
Приведу пример. Так называемое техническое зрение продолжает общее направление формирования структуры восприятия пилотов с помощью созданных компьютером образов поверхности и аэропорта. Когда полет проходит ночью или сквозь облачность, техническое зрение показывает виртуальный пейзаж, а также вектор направления полета. У летательных аппаратов меньшего размера без индикаторов на лобовом стекле (в том числе у моего собственного самолета «Бич Бонанза») в кабине с экранной индикацией созданная синтетическая картина местности служит фоном для изображения приборов. Но с ИЛС вектор направления пути накладывается на созданную компьютером поверхность, позволяя пилоту «наложить одну картинку на другую», то есть поместить вектор на изображение взлетно-посадочной полосы и лететь по нему. Вы приземлитесь там, куда вам укажет вектор.