Воздушно-реактивные двигатели — страница 25 из 27

Оказывается, функции сопла можно передать камере сгорания. Выше отмечалось, что при горении топлива в цилиндрической камере сгорания скорость течения газов увеличивается, так как газы расширяются. Можно добиться и того, чтобы это расширение газов в камере сгорания произошло вплоть до атмосферного давления. Тогда, очевидно, и не будет надобности ни в каком сопле.

Иначе обстоит дело в сверхзвуковом прямоточном воздушно-реактивном двигателе. Так как скорость истечения газов из такого двигателя может значительно превосходить скорость звука, то сопло сверхзвукового двигателя тоже должно быть, как правило, сверхзвуковым. Это значит, что оно должно сначала суживаться, а затем расширяться. Наличие на двигателе такого сопла обычно и свидетельствует о том, что он предназначен для сверхзвукового полета.

В сверхзвуковом прямоточном воздушно-реактивном двигателе функции сопла уже не может выполнять камера сгорания.

В цилиндрической камере сгорания может быть достигнута только скорость звука. Перейти через эту скорость в цилиндрической камере невозможно. Поэтому камера сгорания может заменить только первую, сужающуюся часть сверхзвукового сопла, вторая же, расширяющаяся часть в сверхзвуковом воздушно-реактивном двигателе сохраняется. Следовательно, если сопло двигателя представляет собой простую расширяющуюся трубу, то мы имеем дело со сверхзвуковым двигателем, в котором на выходе из камеры сгорания газы имеют скорость звука.

Глава восьмаяРождение прямоточного двигателя

Прямоточный двигатель — это двигатель сверхзвукового полета, двигатель завтрашнего дня в авиации и реактивной артиллерии. Мы имеем все основания гордиться тем вкладом, который внесла наша страна в дело создания этого замечательного двигателя.

В нашей стране впервые в истории были созданы и испытаны прямоточные двигатели. Эти двигатели были построены профессором Ю. А. Победоносцевым в 1933 г. Правда, они не были предназначены для установки на самолете, но с ними велись различные исследования.

В нашей стране был совершен и первый в мире полет самолета с прямоточными двигателями. В ясный зимний день 25 января 1940 г. с московского аэродрома им. Фрунзе взмыл в воздух самолет, пилотируемый летчиком П. Е. Логиновым (рис. 64). Это был хорошо известный всему миру советский истребитель, один из лучших истребителей того времени И-15. Но на этом самолете под крылом были установлены какие-то два сигарообразных тела. Это и были испытуемые прямоточные двигатели конструкции И. А. Меркулова. Проект этих двигателей был разработан еще в 1936 г., затем двигатель был построен и подвергнут различным испытаниям. В частности, в мае 1939 г. двигатель был испытан в воздухе, для чего его установили на ракете; между прочим, такой метод испытания прямоточных двигателей стал затем применяться и в других странах. Так была доказана возможность установки прямоточного двигателя на самолете. И вот теперь наступил момент первого полета самолета с прямоточными двигателями. В данном случае прямоточные двигатели играли лишь вспомогательную роль, они помогали основному, поршневому двигателю самолета увеличить скорость полета. Длина каждого из двух двигателей, установленных на этом самолете, равнялась 1,5 м, диаметр — 0,4 м, а вес — всего 12 кг.

Рис. 64. Самолет И-15 с установленными на нем прямоточными воздушно-реактивными двигателями


С оглушительным ревом проносится истребитель над головами присутствующих на аэродроме. И вдруг словно какая-то могучая сила швыряет самолет вперед, заставляет его мчаться с еще большей скоростью — это заработали включенные летчиком прямоточные воздушно-реактивные двигатели. Огненные струи хлещут из сопел обоих двигателей — приборы показывают увеличение скорости полета на 21 км/час.

Это был первый в мире полет самолета с воздушно-реактивными двигателями. Он состоялся, в частности, за 8 месяцев до разрекламированного за рубежом полета итальянского самолета Кампини, на котором был установлен так называемый мотокомпрессорный воздушно-реактивный двигатель, не нашедший потом практического применения.

Позднее испытания прямоточных двигателей Меркулова были произведены на самолетах-истребителях «Чайке» и Як-7. При этом прирост скорости полета достигал 53 км/час.

Так произошло рождение прямоточного воздушно-реактивного двигателя. Он заявлял свое право на жизнь. Начались годы напряженной работы по его усовершенствованию.

Экспериментальные исследования прямоточного воздушно-реактивного двигателя связаны с исключительными трудностями, так как через него ежесекундно протекают с огромной скоростью десятки и сотни кубических метров воздуха. Чтобы создать такой поток воздуха при испытании, нужны грандиозные воздуходувные установки мощностью в десятки и сотни тысяч лошадиных сил. Такие установки — аэродинамические трубы сверхзвуковых скоростей непрерывного действия — созданы, но они являются уникальными. Иногда для испытаний прямоточных воздушно-реактивных двигателей применяются и более простые установки, так называемые трубы периодического действия. В этом случае воздух заранее нагнетается под давлением в громадный бак — ресивер, откуда он во время испытаний подается в аэродинамическую трубу. Но относительная простота этих установок (в действительности же они не так просты) покупается дорогой ценой — часами накачивается ресивер для того, чтобы потом можно было провести минутное испытание.

Сложность и дороговизна экспериментальных исследований прямоточных воздушно-реактивных двигателей являются одной из причин того, что эти двигатели отстают в своем развитии от других реактивных двигателей. Поэтому непрерывно изыскиваются новые методы исследования прямоточных воздушно-реактивных двигателей. В частности, для этого иногда используются ракеты. Передача показаний приборов с летящей ракеты осуществляется при этом по радио при помощи сложной радиотелеметрической системы. Такая же система используется в тех случаях, когда испытания прямоточного воздушно-реактивного двигателя осуществляются путем сбрасывания его с летящего самолета; один из прямоточных двигателей, предназначенных для таких испытаний, показан на рис. 65. Широко применяется также установка прямоточных двигателей на самолете: над фюзеляжем (см. рис. 46), на концах крыльев (рис. 66) и т. д.

Основным недостатком прямоточного воздушно-реактивного двигателя является то, что он способен развивать тягу только в полете с большой скоростью. На малой скорости его тяга ничтожна, а на стоянке она вовсе равна нулю. Чтобы прямоточный двигатель начал работать, нужна скорость полета порядка 250 км/час, а для взлета — не менее 650—700 км/час. Значит, для взлета и разгона самолета (или снаряда) с прямоточным воздушно-реактивным двигателем на нем должен быть установлен одновременно двигатель какого-либо другого типа. Это может быть поршневой двигатель, как, например, было при испытаниях первых прямоточных воздушно-реактивных двигателей. Но поршневой двигатель не пригоден для летательных аппаратов, предназначенных для полета со сверхзвуковыми скоростями. Поэтому в качестве стартового двигателя на скоростных самолетах должен быть установлен какой-нибудь реактивный двигатель: турбореактивный, ракетный или пульсирующий. Этот двигатель разгоняет самолет до необходимой скорости, а затем он выключается и начинает работать прямоточный воздушно-реактивный двигатель.

В некоторых случаях, например на снарядах, стартовый двигатель может вообще отсутствовать. Разгон снаряда до скорости, при которой включается в работу прямоточный воздушно-реактивный двигатель, осуществляется в этом случае с помощью специального стартового устройства — катапульты.

Рис. 65. Сверхзвуковой прямоточный воздушно-реактивный двигатель, предназначенный для сбрасывания с самолета с целью испытания его при скорости полета, в 2,5 раза превышающей скорость звука


Рис. 66. Прямоточные воздушно-реактивные двигатели, установленные на крыльях самолетов:

а — самолет с поршневым двигателем; б — реактивный самолет


Необходимость в добавочном стартовом двигателе заставляет конструкторов и ученых работать над созданием такого двигателя, в котором прямоточный воздушно-реактивный двигатель органически сочетался бы с двигателем другого типа в единой конструкции. Это позволило бы не только осуществить самостоятельный взлет самолета, но и решить задачу наиболее экономичной работы на разных режимах полета. Так, например, если бы удалось сочетать в едином устройстве турбореактивный и прямоточный воздушно-реактивный двигатели, то при взлете и в полете с относительно небольшими скоростями двигатель работал бы как турбореактивный, а при сверхзвуковых скоростях полета — как прямоточный. Естественно, что это привело бы к уменьшению расхода топлива и, таким образом, к увеличению дальности полета.

Как же можно представить себе такое органическое сочетание турбореактивного и прямоточного двигателей? Оказывается, одно возможное решение этой задачи подсказывается самой жизнью, развитием реактивной авиации.

Рис. 67. Форсажная камера. Принципиально ее устройство аналогично устройству прямоточного воздушно-реактивного двигателя


Выше указывалось, что для кратковременного повышения тяги турбореактивного двигателя в настоящее время широко используются так называемые форсажные камеры (см. рис. 37).

Если внимательно присмотреться к форсажной камере, то бросается в глаза большое сходство ее с прямоточным воздушно-реактивным двигателем (рис. 67). Действительно, в передней части камеры обычно имеется диффузор, в котором происходит уменьшение скорости и соответственно увеличение давления газов, выходящих из двигателя, — это необходимо для обеспечения устойчивости сгорания в форсажной камере и для увеличения ее коэффициента полезного действия. За диффузором следует обычно цилиндрическая камера сгорания с горелками. Наконец, последней частью форсажной камеры является реактивное сопло.