Возникновение жизни на Земле — страница 2 из 4

днако вопрос сводится не только к тому, чтобы эти пылинки совершили такое путешествие с одной планеты на другую, из одного звездного мира в другой. Надо еще доказать, что эти зародыши жизни во время своего межпланетного путешествия не погибнут.

Может ли спора бактерии вынести те условия, которые существуют в межзвездном и межпланетном пространстве? Ведь там царит страшный холод −200° ниже нуля. Там полностью отсутствует какая-либо влага, отсутствует кислород. Может ли спора бактерии вынести все эти испытания и перелететь к нам на Землю, сохранив свою жизнеспособность? Этот вопрос был подвергнут особому изучению. С первого взгляда казалось, что действительно, перенос такого рода возможен, потому что опыты над зародышами — спорами бактерий — показывают их исключительную стойкость к различного рода внешним воздействиям.

Эти зародыши-споры выносят мороз в −210°. При этой температуре они сохранялись довольно длительное время в жизнеспособном состоянии. Их можно также высушить до совершенно полной потери влаги; в таком высушенном состоянии они могут сохраняться, не теряя жизнеспособности, неограниченно долгое время. Стоило их только поместить во влажную среду, как они прорастали, вновь размножались и служили» источником новой жизни.

Есть указания, что в сибирской вечномерзлой земле, так называемой «вечной мерзлоте», и в глубоких торфяных отложениях были найдены зародыши бактерий, которые пролежали там многие тысячелетия, сохранив жизнеспособность. Все это показывает, что как будто межпланетный перенос бактерий возможен. Однако в последние годы пришлось целиком отказаться от этого предположения. Было доказано, что межзвездное и межпланетное пространство пронизано невидимыми, так называемыми коротковолновыми ультрафиолетовыми лучами. Эти лучи не достигают до поверхности нашей Земли. Они поглощаются верхним слоем нашей атмосферы. Примерно в 30 километрах от поверхности Земли — находится слой газа озона, который целиком поглощает эти лучи.

Мы можем искусственно, при помощи специальных электрических ламп, воспроизвести эти лучи. Правда, они действуют на очень коротком расстоянии, потому что поглощаются нашим воздухом. При воздействии этих лучей на организмы они погибают. В частности, погибают, и зародыши бактерий. Те бактерии, которые выдерживают и страшный холод и полное отсутствие кислорода и влаги, не выдерживают действия этих лучей уже в течение нескольких минут, а иногда нескольких секунд.

Межзвездное пространство пронизано этими «лучами смерти». Поэтому ничем не защищенные зародыши жизни в межзвездном пространстве безусловно должны погибнуть под влиянием этих лучей, как только они вылетят за пределы защищающей их атмосферы. Таким образом, в настоящее время пришлось полностью отказаться от тех представлений, которые были развиты Аррениусом и рядом других ученых.


Живые бактерии под действием коротковолновых ультрафиолетовых лучей погибают и слипаются в безжизненный комок.

Подведем итоги всему сказанному. На первый взгляд, эти итоги получаются очень неутешительными для решения поставленной нами задачи. Живые существа в настоящее время родятся только от себе подобных. В настоящее время они на Земле не возникают из неживой природы. Они не могли и быть занесенными к нам на Землю с других небесных тел. Получается какой-то безвыходный тупик, как будто неразрешимая задача. Однако современная наука нашла выход из этого тупика. Решить эту задачу, над которой бились выдающиеся умы в течение многих веков, удалось только на основе диалектического материализма.

С точки зрения диалектического материализма, жизнь не является вечной. Жизнь — это особая форма существования материи, которая могла возникнуть только в процессе развития этой материи; иначе говоря, живые организмы возникли все же из неживой материи. Для того чтобы понять, как возникла жизнь из неживой материи, мы должны проследить историю тех превращений, которые претерпевала материя еще задолго до возникновения жизни. И только на этом пути мы сможем понять и правильно решить вопрос о происхождении жизни на Земле.

В основном нас будут интересовать те вещества, из которых построены все живые существа — от простейших до позвоночных млекопитающих. Тела всех животных, растений и наипростейших существ — бактерий — построены из органических веществ. Чем отличаются эти вещества от неорганических? Они отличаются прежде всего тем, что в основе всех этих веществ, входящих в состав тела животных и растений, лежит элемент углерод. В этом очень легко убедиться — стоит только материалы растительного или животного происхождения подвергнуть сильному нагреванию, которое вызовет их разложение: при отсутствии воздуха они будут обугливаться. Возьмем ли мы дерево, бумагу, шерсть, кожу, жир, крахмал, мясо — все это будет обугливаться при нагревании до высоких температур, свидетельствуя, что в остове этих материалов лежит углерод.

Но если мы возьмем неорганические материалы — металлы, стекло, любой камень, — то сколько бы мы их ни нагревали, обугливаться они не будут. Таким образом, в основе того материала, из которого построена живая плоть, в основе органических веществ лежит элемент углерод. Поэтому для того, чтобы понять происхождение жизни, нам нужно проследить историю этого элемента. Нужно сказать, что углерод присутствует не только у нас на Земле и даже не только на нашем Солнце. При помощи особого прибора, разлагающего свет, так называемого спектроскопа, мы можем обнаружить присутствие этого элемента на любой звезде.

Таким образом, можно при помощи спектроскопа анализировать состав звезд почти так же, как если бы они были у нас в лаборатории. Но поверхность звезд имеет чрезвычайно высокую температуру, которая достигает у некоторых величины в 27 000°. Совершенно ясно, что при таких температурах не могут существовать не только никакие живые существа, но вообще какие-либо химические соединения. Вся материя при этих условиях находится в виде мельчайших раздробленных частичек, в виде беспорядочно носящихся атомов. Частички углерода тоже не могут при такой исключительно высокой температуре соединяться с другими какими-нибудь частичками. Они все разрознены и находятся в беспорядочном движении. В таком состоянии находится углерод в атмосфере наиболее горячих звезд. Но, изучая пути постепенного развития (эволюции) звезд, мы находим такие светила, температура поверхности которых равна 12 000°.

На таких звездах мы уже можем обнаружить первые химические соединения. В частности, здесь присутствуют соединения углерода с водородом — с тем элементом, который входит в состав воды. Наше Солнце является звездой, температура поверхности которой равна в среднем 6000°, то есть оно по сравнению с наиболее горячими звездами является уже Несколько остывшим светилом. В атмосфере нашего Солнца мы можем установить присутствие целого ряда соединений углерода. Углерод уже начинает вступать в соединение с другими элементами: с водородом, азотом, а кроме того, в атмосфере Солнца мы обнаруживаем и такого рода соединения, где отдельные атомы углерода начинают соединяться между собой.

Наша Земля возникла когда-то из той материи, из которой состоит и атмосфера нашего Солнца. Примерно три, а может быть, даже пять миллиардов лет назад от поверхности Солнца стали отрываться газовые сгустки, из которых в дальнейшем сформировались планеты нашей солнечной системы.

Тот сгусток, из которого образовалась наша планета, Земля, был сравнительно мелким образованием в мире звезд. По вычислениям американского астронома Ресселя, остывание этого газового сгустка происходило сравнительно быстро (конечно, на астрономический масштаб) — в течение каких-нибудь десятков «тысячелетий. Что при этом происходило с тем углеродом, который ранее находился в атмосфере Солнца и затем попал в газовый сгусток, из которого образовалась наша Земля?

Уже на Солнце при температуре в 6000° мельчайшие газовые частички — атомы углерода — стали соединяться между собой, образуя частички более крупные, так называемые молекулы. Эта способность углерода соединяться в более крупные частички даже при очень высоких температурах является чрезвычайно существенной его особенностью. Именно благодаря этой способности углерод является самым тугоплавким веществом, которое мы только знаем. В присутствии кислорода, а следовательно, и воздуха углерод окисляется, горит, но если мы будем нагревать его в отсутствии воздуха, то мы можем поднять его температуру до очень большой высоты, до нескольких тысяч градусов, и углерод при этом не будет плавиться.

При остывании того газового сгустка, из которого формировалась Земля, углерод первым должен был сгуститься и из состояния газа перейти в жидкое, а потом в твердое состояние. В таком виде он должен был опуститься к центру тяжести газового сгустка, войти в состав начального, первичного ядра формирующейся Земли. Точно так же туда должны были вскоре войти и некоторые наиболее тугоплавкие элементы — металлы, в частности железо, которым так изобилует атмосфера нашего Солнца. Углерод и другие тугоплавкие вещества сгустились первыми и вошли в состав центрального ядра нашей планеты.

В дальнейшем это ядро стало одеваться оболочкой, на его поверхности благодаря дальнейшему остыванию Земли стали образовываться другие оболочки из горных пород, которые одели это ядро, образовав так называемые геосферы. В конечном итоге в состоянии газа осталась только атмосфера, одевающая весь наш земной шар.

Хотя это центральное ядро недоступно непосредственному наблюдению человека, тем не менее наука при помощи ряда косвенных приемов установила, что оно лежит примерно на глубине 2500 километров и имеет радиус, равный примерно 3500 километров. Сверху оно одето рудными и каменными оболочками. Химический состав этого ядра в настоящее время так же при помощи косвенных приемов довольно точно определен. В основном, оно состоит из железа, никеля, кобальта, хрома и некоторых других элементов. В частности, в нем находится и значительное количество интересующего нас э