Прошло больше 20 лет, прежде чем космический телескоп «Кеплер» был запущен в космос и смог приступить к поиску новых миров. НАСА бесконечное число раз отклоняло планы проведения миссии, но, к чести готовивших ее ученых, надо отметить, что все технические трудности и сомнения были преодолены с помощью лабораторных и полевых испытаний‹‹6››. «Кеплер» был выбран в качестве исследовательской миссии НАСА в декабре 2001 г. Сколько это стоило? $600 млн на все: создание телескопа, запуск и обработку данных на Земле. С учетом полученных на сегодняшний день научных результатов инвестиции оказались очень выгодными.
Космический телескоп «Кеплер» был запущен 6 марта 2009 г. Основная программа была рассчитана на 3,5 года с возможностью проведения наблюдений на протяжении 6 лет. Размеры «Кеплера» относительно невелики, диаметр его главного зеркала составляет 0,95 м. Главное достоинство телескопа — 95-мегапиксельный сверхчувствительный фотометр. Телескоп направлен на скопления звезд между созвездиями Лиры и Лебедя, и его поле зрения охватывает 105 квадратных градусов. Это очень обширный участок неба. Если учесть, что угловой размер Луны равен примерно половине градуса, то поле зрения «Кеплера» настолько велико, что по каждой его стороне разместилось бы по 21 Луне.
Зачем это понадобилось? В поле зрения телескопа попадает 160 000 звезд, яркость которых позволяет добиться необходимой фотометрической точности, при этом они не должны перекрывать друг друга или проецироваться на дальние галактики. Каждые шесть секунд «Кеплер» фотографирует это скопление звезд, а затем обрабатывает и записывает полученные данные. Первичная информация не сохраняется, поскольку в таком случае у «Кеплера» довольно быстро закончилось бы место на жестком диске. Более того, скорость, с которой поступает информация, значительно превышает скорость передачи данных на Землю. Вместо этого «Кеплер» замеряет яркость каждой из 160 000 исследуемых звезд и хранит только эту информацию. На основании массивов измерений яркости, сделанных для каждого снимка, затем рассчитываются средние значения за 3 минуты. «Кеплер» хранит эту информацию в сжатом виде на диске и только раз в месяц посылает «цифровую открытку» со значениями яркости для каждой звезды на Землю, где этих ежемесячных посланий с нетерпением ожидает команда ученых, анализирующая данные наблюдений.
«Кеплер» следовал этому распорядку на протяжении 4 лет, последовательно измеряя яркость всех 160 000 звезд каждые 6 секунд. Такое терпение и аккуратность сделали бы честь даже Кеплеру. К несчастью, 11 мая 2013 г. произошла поломка второго из четырех установленных на борту двигателей-маховиков. Эти двигатели применяются для высокоточной ориентации и стабилизации космического телескопа, обеспечивая его выравнивание вдоль осей. Поскольку пространство имеет три измерения (оси), необходимо по крайней мере три двигателя-маховика, чтобы поддерживать ориентацию телескопа на определенный участок неба. Более того, поскольку точность ориентации телескопа является критически важным компонентом, влияющим на общую погрешность измерения яркости звезд, отказ двух двигателей-маховиков означал для «Кеплера» полную потерю управляемости и работоспособности.
Основная часть миссии по обнаружению экзопланет завершилась, но слухи о кончине самого «Кеплера» сильно преувеличены — телескоп по-прежнему способен следить за различными участками неба, используя для стабилизации космического аппарата давление солнечного излучения. В будущем нас, несомненно, ждут новые миссии по обнаружению внесолнечных планет, но не будет преувеличением сказать, что миссия «Кеплера» позволила нам раздвинуть границы наших познаний так же, как и любая другая космическая миссия в настоящем, прошедшем и, возможно, будущем. Так что же мы выяснили? Как выглядят эти дивные новые миры?
Горячие юпитеры
Чтобы охарактеризовать недавно открытые экзопланеты, нам придется выдумать новые термины — новые слова для новых классов планет. Теперь вокруг звезд нашей галактики Млечный Путь обращаются горячие юпитеры и сверхземли. Самое удивительное в том, что касается недавно открытых экзопланет — различными методами, не только с помощью «Кеплера», — это их невероятное разнообразие. Упомянутая ранее 51 Пегаса b была первым обнаруженным горячим юпитером, а теперь я хочу представить вам Ипсилон Андромеды b. Звезда Ипсилон Андромеды расположена в 44 световых годах от Земли. Это звезда спектрального класса F, немного горячее и ярче нашего Солнца и, по счастливой случайности, видимая невооруженным глазом‹‹7››. Ипсилон Андромеды b была обнаружена в 1996 г., через год после 51 Пегаса b, и это еще один пример горячего юпитера — этой удивительной новой разновидности планет. Но на каких измерениях основано это утверждение? А конкретнее, как мы определяем температуру планеты?
На основании лучевых скоростей планет в системе Ипсилон Андромеды мы смогли определить, что масса Ипсилон Андромеды b равна примерно половине массы Юпитера и он обращается вокруг своей родительской звезды за 4,6 суток. Если масса звезды сопоставима с массой Юпитера, мы можем считать, что этот мир похож на Юпитер, но почему в таком случае он горячий? Чтобы в этом разобраться, мы должны вспомнить третий закон Кеплера и зависимость между периодом вращения и орбитальным радиусом. Если масса родительской звезды примерно такая же, как у Солнца, мы можем представлять себе орбиту Ипсилон Андромеды b в масштабах нашей Солнечной системы. Итак, если период обращения составляет 4,6 суток, то орбитальный радиус Ипсилон Андромеды b равен приблизительно 1/12 (точнее 0,06) а. е. Это примерно восьмая часть расстояния от Меркурия до Солнца. Очевидно, это будет горячая планета, но можно ли сказать точнее?
Чтобы определить температуру поверхности планеты, мы должны сделать одно важное допущение: большую часть энергии, полученной от своей родительской звезды, планета отдает в космос. На основании температуры родительской звезды, доли ее излучения, поглощаемой планетой (в противовес отражаемому излучению), и орбитального расстояния планеты можно подсчитать температуру энергетического баланса на поверхности планеты. Для Ипсилон Андромеды b равновесная температура оказалась больше 1130 °C — действительно горячо!
Однако вскоре выяснилось, что, если вычесть влияние планеты Ипсилон Андромеды b на доплеровское смещение родительской звезды, у нее по-прежнему будут наблюдаться заметные колебания лучевой скорости, а значит, в ее системе есть и другие планеты. Как оказалось, Ипсилон Андромеды обладает четырьмя планетами с массами порядка массы Юпитера, обращающимися на расстоянии, сопоставимым с орбитальным радиусом Юпитера в нашей Солнечной системе. Три оставшиеся планеты более удалены от звезды, чем планета b, и, следовательно, температуры равновесия для них будут ниже. Я надеюсь, что на этом месте у вас что-то щелкнуло и вы увидели связь между равновесной температурой и зоной обитаемости. Хотя зону обитаемости можно определить несколькими способами — от самых простых, не выходящих за рамки курса общей физики, до более сложных, учитывающих состав атмосферы конкретной планеты, — но проще всего, наверное, сказать, что границы зоны обитаемости устанавливаются из расчета, что температура равновесия для планет должна находиться в диапазоне между 0 и 100 °C.
…и сверхземли!
Одной из самых неожиданных находок в коллекции планет, обнаруженных «Кеплером», стало большое количество миров, радиусы которых равны радиусу Земли или незначительно (до четырех раз) его превышают. В нашей Солнечной системе радиусы Урана и Нептуна в четыре раза превышают земной. Их массы равны 14 и 17 массам Земли соответственно. В нашей Солнечной системе нет планет, чья масса превышала бы массу Земли, но была бы меньше массы Нептуна, однако в каталоге планет, обнаруженных «Кеплером», планеты среднего размера встречаются чаще всего. Как они выглядят? Окажутся ли они каменными планетами с массой большей, чем Земля, так называемыми сверхземлями, или уменьшенными юпитероподобными мирами, маломерными Нептунами?
Ярким примером сверхземли может служить планета под названием Кеплер 10c. Она была обнаружена космическим телескопом «Кеплер» с помощью транзитного метода. Ее радиус в 2,3 раза больше земного. Вычисленная на основании лучевой скорости родительской звезды масса планеты в 17 раз больше массы Земли — почти так же, как масса Нептуна. Зная массу и радиус, мы можем вычислить плотность Кеплера 10c. Она в 1,3 раза плотнее Земли, а это значит, что ее нельзя отнести к газовым гигантам: это суперсверхземля. Но почему планеты с массой, превышающей массу Земли в 17 раз, иногда оказываются каменными (как Кеплер 10c), а иногда газовыми гигантами (как Нептун)? У нас пока нет ответа на этот вопрос.
Теперь можно сказать, что было бы совсем не интересно и даже немного обидно, если бы оказалось, что наша планетная система всего лишь одна из множества таких же систем, созданных словно по шаблону.
Надо признаться, что наша современная планетология — как показало открытие экзопланет — больше напоминает фантастический сценарий, в котором возможны почти любые варианты планет. Но от этого она только интересней!
Множественность миров
В нашем языке нет общепринятого собирательного существительного, обозначающего совокупность планет. «Планетная система» — функциональный термин, но звучит как-то не очень. «Множество планет» — тоже не слишком вдохновляюще. Эта фраза часто приписывается Джордано Бруно, жившему в XVI в. священнику и философу, который утверждал, что звезды — это солнца и что каждое из них имеет не только свои планеты, но и жителей, их населяющих. Идея космического плюрализма получила широкое распространение в эпоху Просвещения и с тех пор пережила лишь один (по счастью, короткий) период общественного разочарования после краха теории Лоуэлла относительно жизни на Марсе. Данные, полученные «Кеплером», говорят о настоящем космическом плюрализме: планеты — это заурядное явление. Настолько заурядное, что я бы предложил другое собирательное существительное — рой планет!