В ходе дальнейших исследований многочисленные авторы, входящие в разные исследовательские группы по всему миру (изучение сверхновых – очень интернациональная область астрофизики), развивали и совершенствовали подходы к моделированию взрыва. Так, группа Геннадия Бисноватого-Когана в Москве сделала ставку на учет процессов, связанных с вращением и сильными магнитными полями, образующимися в результате сжатия ядра. Энергия вращения и магнитного поля растет при коллапсе за счет гравитационной потенциальной энергии. Важно, что значительную ее часть можно затем передать оболочке, а именно это нужно, чтобы получить взрыв. Однако физика резко усложняется, если к и без того непростой гидродинамике и переносу нейтрино добавлять магнитную гидродинамику, да еще с быстрым вращением, что требует в идеале трехмерных расчетов (первые модели сверхновых были, по сути, одномерными, т. е. рассматривался сферически-симметричный случай), а они не только технически сложнее с точки зрения алгоритмизации и программирования, но и требуют гораздо более мощных компьютеров для вычислений.
Важным этапом в развитии моделей сверхновых стал детальный учет эффектов общей теории относительности. Они, безусловно, становятся важны в задаче о коллапсе, так как в центре взрыва находится компактный массивный объект. Оказалось, что эффекты ОТО помогают взрыву. Это было хорошей новостью. Плохая заключалась в том, что их недостаточно, чтобы решить все проблемы.
Модели продолжали оттачиваться. Авторы начали детально рассчитывать эффекты, связанные с турбулентностью в коллапсирующем веществе. Все более детально учитывалась физика нейтрино. Например, стали принимать во внимание нейтринные осцилляции, а также процессы с участием этих частиц в сильном магнитном поле (уточню, что такие эффекты сильных полей принципиально отличаются от учета магнитного поля в смысле динамики плазмы или передачи энергии оболочке). Все более детально учитывались эффекты, связанные с ядерной физикой. А это не только многочисленные реакции, но и использование уравнений состояния, все лучше описывающих поведение вещества. Уравнение состояния показывает, как давление зависит от плотности, т. е., в частности, определяет, как вещество сопротивляется сжатию. Мы относительно неплохо понимаем, как устроено уравнение состояния вплоть до ядерных плотностей. Но внутри протонейтронной звезды плотность уже начинает превосходить это значение – там «живут драконы». У нас нет экспериментальных данных или надежной теории для описания процессов в сверхплотном веществе, тем более при такой большой температуре, как при коллапсе ядра звезды. Поэтому тут открывается простор для усилий теоретиков. В 2015 г. группе Ханса-Томаса Янки (Hans-Thomas Janka) в Германии удалось путем учета вклада так называемых странных (s-) кварков[44] получить взрыв сверхновой в трехмерном расчете. Однако и это не стало финальной точкой – физика кварков сама по себе достаточно сложна, а в расчетах пока были использованы лишь довольно простые варианты их описания.
Сейчас физика сверхновых – это в первую очередь сложные компьютерные модели. Теория в этой области исследований прошла большой путь от простых аналитических оценок энергии взрыва до трехмерных расчетов с использованием самых мощных суперкомпьютеров на Земле (и даже на них расчет каждого варианта занимает месяцы, а надо ведь еще варьировать параметры моделей!). Сможем ли мы с помощью дифференциальных уравнений и традиционных численных методов добиться полного понимания? Или понадобится какой-то эволюционный скачок в попытке воспроизвести сверхновую в компьютере?
А. МАТЕМАТИКА ПРЕДЛАГАЕТ НАМ МЕТОДЫ, УДИВИТЕЛЬНО ПОДХОДЯЩИЕ ДЛЯ РАБОТЫ С АКТУАЛЬНЫМИ ЗАДАЧАМИ, СВЯЗАННЫМИ КАК С ЕСТЕСТВЕННЫМИ, ТАК И С ИСКУССТВЕННЫМИ ПРОЦЕССАМИ. ПРИЧЕМ ЗАЧАСТУЮ МЕТОДЫ БЫЛИ РАЗРАБОТАНЫ БЕЗ ВИДИМОЙ СВЯЗИ С РЕАЛЬНЫМ МИРОМ ВОКРУГ НАС.
Б. МАТЕМАТИКА (А ОТЧАСТИ И ТЕОРЕТИЧЕСКАЯ ФИЗИКА) СТОЛЬ СОВЕРШЕННА, ПОТОМУ ЧТО ОНА НЕ ТОЛЬКО ЭВОЛЮЦИОНИРОВАЛА И РАЗВИВАЛАСЬ, НО И МОГЛА ИЗБАВЛЯТЬСЯ ОТ СЛЕДОВ НЕУДАЧНЫХ ПОПЫТОК РАЗВИТИЯ ГОРАЗДО ЭФФЕКТИВНЕЕ, ЧЕМ ЭТО УДАЕТСЯ ЖИВЫМ СУЩЕСТВАМ В ХОДЕ БИОЛОГИЧЕСКОЙ ЭВОЛЮЦИИ.
В. МЕТОДЫ ОПИСАНИЯ РЕАЛЬНОСТИ (Т.Е., ПО СУТИ, МЕТОДЫ ЕСТЕСТВЕННЫХ НАУК) МОГУТ ПРЕТЕРПЕТЬ В БУДУЩЕМ СЕРЬЕЗНЫЕ ИЗМЕНЕНИЯ, ПРЕДСТАВИТЬ КОТОРЫЕ МЫ В ЛУЧШЕМ СЛУЧАЕ МОЖЕМ В САМЫХ ОБЩИХ ЧЕРТАХ.
Глава 7Чем математика похожа на глаз?
«Чем ворон похож на письменный стол?» Не исключаю, что Льюису Кэрроллу понравился бы вопрос: «Чем математика похожа на глаз?» Мой ответ: «И то и другое удивительно, и в обоих случаях мы можем понять почему».
Нередко, если ребенок быстро и хорошо считает, ему говорят: «Математиком будешь». Совсем не факт, что это окажется близко к истине (более того, можно и навредить), так как математика вовсе не похожа на устный счет. Хотя истоки, конечно, восходят именно к нему. «Счет должен был появиться десятки тысяч лет назад, – говорят нам антропологи. – Один мамонт, два мамонта». Однако важно было перейти к понятию числа, абстрагироваться, так сказать, от этих хоботных млекопитающих. Со временем мамонты вымерли и абстрагироваться от них стало проще.
Как бы то ни было, более трех тысячелетий назад в Египте уже существует нечто среднее между простым устным счетом и математикой, т. е. продвинутая арифметика, а также методы вычисления площадей и объемов. Постепенно методы вычислений развиваются, но практически нет «решений в общем виде», а также системы, связывающей различные элементы воедино, – пока не существует ни алгебры, ни геометрии. Это не позволяет начать строить логически связанную систему, известную нам как математика.
Всем известно, что важный рубеж смогли преодолеть античные греки. К пифагорейцам можно возвести начала алгебры, поскольку именно они начали строить систему операций с (целыми) числами, основанную на некоторых постулатах[45], а к платоникам – геометрию. Существенным стало именно создание логически связанной структуры, базирующейся на наборе аксиом. В таком случае мы можем не только решать текущие задачи, но и развивать наш метод, используя его внутренние ресурсы. С этой точки зрения настоящим памятником культуры является евклидова геометрия. Это образец понятного и строгого вывода, основанного на разумных постулатах, к тому же более или менее соответствующих нашему опыту.
На фундаменте, заложенном древними греками (которые сами учились чему-то у египтян, а чему-то – у других народов), выросло современное здание математики, парадоксальное и восхитительное. К нашему удивлению, математика предлагает неожиданные готовые решения проблем, в том числе и самых насущных: как правильно составить расписание, как лучше организовать транспортную сеть, как быстрее найти информацию в большой базе данных и т. д. Ну или совершенно неактуальных в быту: как описать движение частиц в многомерном искривленном пространстве, как из данных о колебаниях лучевой скорости звезды в системе девяти планет определить параметры каждой из них и т. д. и т. п. Более того, эффективность математических методов настолько велика, что позволяет делать естественно-научные открытия «на кончике пера», т. е. просто путем анализа решений уравнений.
«Непостижимая эффективность математики» сродни чуду человеческого глаза (хотя глаза стрекозы или лобстера не менее, а может быть, даже и более удивительны). И то и другое заставляет некоторых людей объяснять его сверхъестественными причинами.
«Необъяснимая» сложность глаза служит аргументом для теории разумного замысла. Ведь никто не поверит, что сам собой (в результате случайных мутаций) неожиданно появился столь хитроумный орган, выполняющий так много функций. Но он таким способом и не появлялся! Проблема долгое время состояла в том, что органы зрения древних животных очень трудно изучать. Это же не костные останки, достаточно хорошо сохраняющиеся в грунте, благодаря чему мы можем десятки миллионов лет спустя восстановить полные скелеты динозавров (у которых, к слову, уже было вполне продвинутое зрение) и посмотреть, как они связаны с ныне живущими видами. Тем не менее развитие научных методов привело к тому, что мы все-таки можем восстановить основные вехи в становлении структуры светочувствительных органов, приведшем к появлению зрения современного человека.
Эффективность математики также иногда служит аргументом в пользу наличия Творца. Если для Ньютона это был «Великий часовщик», то теперь для кое-кого – творцы Матрицы. Ведь это поразительно, как просто и гармонично устроен мир. Вот закон Всемирного тяготения – а вот из него выводятся эллиптические орбиты планет и все прочие законы Кеплера. При этом сам закон напрямую связан с трехмерностью нашего пространства. Более того, например, математика – явно искусственно созданная и развиваемая человеком структура. Однако она позволяет в некоторых случаях не только описывать, но и предсказывать явления в реальном мире! Книга природы написана на языке математики. Кем? Неважно, кем конкретно, но ведь не сама же себя написала?[46]
С математикой произошло нечто, похожее на появление глаза, – эволюция. Именно это объясняет ее сложность и поразительную адаптированность к миру (вероятно, в мирах, не описываемых в рамках достаточно простых законов, жизнь попросту невозможна; об этом говорит и антропный принцип, см. главу 10). Причем если в случае глаза (и других органов) людям в наследство достались разные неудобные странности (перевернутая сетчатка, слепое пятно), то развитие науки часто позволяло по ходу изучения этого органа вносить коррективы. Тем не менее какие-то рудименты остались. У нас на руках 10 пальцев, поэтому базовая система счисления десятеричная (хотя для счета времени и угловых координат мы используем шестидесятеричную, а в компьютерах – двоичную). У нас есть устоявшиеся традиции расположения осей в трехмерном пространстве (и иногда, когда вдруг удобнее использовать другой вариант, например при описании движения объектов в нашей Галактике, возникает путаница). Читатель может попробовать привести свои примеры.