Все формулы мира. Как математика объясняет законы природы — страница 28 из 39

Остроумный подход использовала коллаборация спутника Fermi[113]. Допустим, мы могли пропустить вспышку (или ни один из аппаратов не смотрел в нужную сторону, или вспышка была слаба, или еще что-то помешало, например солнечная активность). Но за годы до момента своего исчезновения достаточно близкая черная дыра является заметным гамма-источником, чьи светимость и спектр меняются по более или менее известному закону. А кроме того, поскольку объект достаточно близкий, можно заметить его смещение на небе. Соответственно, был проведен поиск источников, которые исчезли за несколько лет мониторинга всего неба в гамма-диапазоне обсерваторией «Ферми», и при этом определенным образом эволюционировали их светимости и спектральные параметры, а также изменялись координаты. Опять-таки ничего обнаружить не удалось, но был дан самый жесткий предел на темп испарения черных дыр в наших окрестностях: менее десятка тысяч событий в год в объеме один кубический парсек.

Второй путь связан не с поиском вспышек, а с попытками обнаружить суммарный вклад множества испаряющихся черных дыр. Во-первых, можно искать «лишнее» гамма-излучение. Например, от черных дыр в центральной части нашей Галактики или от соседних галактик. А во-вторых, можно искать частицы, рождающиеся на финальных стадиях испарения, причем не просто частицы, а античастицы.

Чтобы выполнялся закон сохранения электрического заряда, частицы должны рождаться парами: электроны-позитроны, протоны-антипротоны[114]. Электронов и протонов вокруг много – трудно выявить лишние, а вот позитронов и антипротонов – мало. Понятно, что в тарелке супа проще обнаружить лишнюю ложку соли, чем лишнюю ложку воды. Вот и астрофизики ищут избыток античастиц. Пока также ничего не выявлено, однако попытки обнаружить сигнал продолжаются. Например, недавно появились интересные результаты со спутников «Вояджер», вылетевших за пределы гелиосферы[115]. За гелиопаузой проще обнаружить лишние позитроны, так как солнечный ветер и относительно большое магнитное поле во внутренних частях Солнечной системы не мешают их распространению. Увы, снова ничего.

Наконец, черные дыры можно искать способами, описанными нами в приложениях 4А и 4Б: с помощью микролинзирования и поиска аккрецирующих источников[116]. Такие работы были проведены, и тоже с нулевым результатом[117]. Хотя… В 2019 г. появилась работа, в которой представлены шесть ультракоротких событий линзирования по данным проекта OGLE[118]. Не исключено, что это могут быть первичные черные дыры с массами порядка земной. Хотя более вероятно, что это просто блуждающие одинокие планеты.

Подведем итоги. Все основные космологические модели предсказывают, что в первые доли секунды существования вселенной должны были возникать черные дыры. Таких объектов может быть много, и иногда их даже обсуждают как кандидатов для объяснения хотя бы части темного вещества. Тем не менее, несмотря на применение разнообразных методов поиска, пока ничего не обнаружено. Теория не может дать надежного предсказания о количестве таких объектов. Поэтому поиски продолжаются, и в любой момент кому-то может повезти. Как говорил Семен Семенович Горбунков, «будем искать».

Приложение 5Астрофизика нейтронных звезд

Нейтронные звезды – одни из самых интересных физических объектов[119]. В результате коллапса ядер массивных звезд формируются тела с массами 1–2 солнечных и радиусами 10–15 км. Столь высокая компактность приводит к ряду экзотических свойств, связанных со сверхвысокой плотностью, сильной гравитацией и мощными магнитными полями. В этом приложении мы обсудим несколько аспектов, связанных с физикой нейтронных звезд, попробовав на уровне простых формул продемонстрировать суть дела, а также сделав ряд количественных оценок.

5А. Магнитные поля нейтронных звезд

Многие особенности нейтронных звезд связаны с тем, что они обладают очень сильными магнитными полями. Если на поверхности Земли поле не превышает 1 Гс, а в лабораторных экспериментах на мгновение удается получить поле в миллион раз больше, то на нейтронных звездах типичными считаются поля в миллион миллионов (1012) Гс! У некоторых магнитаров они еще в тысячу раз выше. Откуда эти поля взялись?

Нейтронные звезды образуются в результате коллапса ядер массивных звезд. Поскольку все звезды имеют магнитное поле, то оно должно достаться в наследство и нейтронной звезде. Более того, в ходе коллапса поле возрастет. Это достаточно легко понять.

Представьте себе звезду, пронизанную линиями магнитного поля. Плотность силовых линий – сколько их проходит через данную площадку – будет определять величину поля. Мысленно выделим ядро и опояшем его по экватору. Начинается коллапс – ядро сжимается. При этом число линий поля внутри кольца, охватывающего экватор, сохраняется (как говорят, «сохраняется магнитный поток»), а площадь поверхности ядра уменьшается, ведь она равна 4πR2, где R – радиус сферы. Значит, будет расти плотность силовых линий, т. е. будет возрастать поле: Если до коллапса радиус ядра составлял 10 000 км и в итоге сформировалась нейтронная звезда с радиусом 10 км, то поле возрастет в миллион раз. Поле в ядре незадолго до коллапса может быть заметно выше, чем на поверхности звезды (где поля могут доходить до нескольких тысяч Гаусс), поскольку ядро постепенно поджималось (и уплотнялось) в течение эволюции звезды, так что значения порядка 1 млн Гс не должны быть редкими. В результате после коллапса мы легко получим нейтронную звезду с полем 1012 Гс.

Однако, чтобы создать магнитарное поле, которое, напомню, в тысячу раз выше, нужно что-то еще. Скорее всего, на стадии протонейтронной звезды, когда формирующийся компактный объект полностью конвективен (т. е. в нем идут бурные процессы перемешивания вещества), работает так называемый динамо-механизм, усиливающий магнитное поле. Источником энергии для формирующегося гигантского магнитного поля магнитара служит вращение протонейтронной звезды.

Давайте разберемся с энергией вращения и энергией магнитного поля. Представьте себе вращающийся шар. Каждый его маленький кусочек движется по окружности, перпендикулярной оси вращения. Пусть период вращения равен P, а радиус шара – R. Рассмотрим кусочек вещества массой Δm. Он вращается на расстоянии r<R от оси. Его скорость 2πr / P. Значит, он обладает кинетической энергией Δm (2πr / P)2 / 2. Чтобы получить полную энергию, связанную с вращением, нам надо просуммировать энергии всех кусочков вещества. Строго это получается интегрированием по объему шара. Ясно, что полная масса равна M, при этом все кусочки вращаются внутри шара, т. е. их скорости меньше 2πR / P. Значит, полная кинетическая энергия будет меньше, чем 4π2MR2 / 2P2. Насколько меньше, зависит от того, как меняется плотность вещества внутри шара. Для нейтронных звезд она изменяется слабо, поэтому энергия будет ненамного меньше максимальной.

Чтобы упростить запись формул, удобно ввести две величины: угловую частоту вращения и момент инерции. Угловая частота – это просто 2π / P. Обозначим ее буквой ω. Момент инерции (его обозначим буквой I) показывает, насколько инертно тело в смысле вращения, т. е. насколько трудно его раскрутить, а потом – затормозить (смысл примерно как у массы, характеризующей инертность в смысле поступательного движения). Момент инерции шара пропорционален произведению массы на квадрат радиуса (дополнительный безразмерный множитель зависит от распределения вещества в шаре). Энергия вращения запишется теперь в простом виде, напоминающем формулу для кинетической энергии: E = 2 / 2. В случае нейтронной звезды I ≈ MR2 что составляет примерно 1045 г·см2. Период вращения может составлять 0,001 секунды. Таким образом, получаем, что энергия вращения нейтронной звезды может достигать колоссальной величины >1052 эрг. Насколько это много? Это больше, чем Солнце излучает за всю свою жизнь! Так что, даже если малую часть этой энергии конвертировать в энергию магнитного поля, можно получить очень большую величину.

Как посчитать энергию магнитного поля? Не будем начинать с самых основ, а сразу скажем, что плотность магнитной энергии (т. е. магнитное давление) вычисляется по формуле: B2/8π. Значит, чтобы узнать примерную магнитную энергию, содержащуюся в нейтронной звезде, надо эту величину умножить на объем звезды (для простоты предполагаем, что поле заполняет весь компактный объект). Если поле на поверхности равно 1012 Гс, то полная энергия будет равна 2·1041 эрг. Совсем немного. Но если поле магнитарное, то энергия возрастает до 1047 эрг, столько Солнце излучает за 1 млн лет. Однако видно, что энергия вращения может быть больше, так что ее хватит для усиления поля.

С чем еще можно сравнить энергию магнитного поля? Например, с потенциальной (гравитационной) энергией нейтронной звезды. Она вычисляется как GM2/R. В типичном случае это составит 4·1053 эрг. Эта величина позволяет понять, каким может быть предельное магнитное поле. Из



получим, что поле никак не может быть больше 1018 Гс, иначе звезду «разорвет».

У нас нет примеров нейтронных звезд со столь сильными полями; скорее всего, в природе они не встречаются. Но уже типичные магнитарные поля могут искажать сферическую форму нейтронной звезды, ведь магнитное поле распределено в ней неравномерно. Нейтронные звезды могут быть немного вытянутыми вдоль магнитной оси, а могут быть сплюснутыми, что должно сказываться на том, как компактный объект вращается, поэтому есть надежда увидеть это в данных наблюдений. Кроме того, вращение такого несимметричного объекта (если магнитная ось не совпадает с осью вращения) должно приводить к испусканию гравитационных волн. Не исключено, что детекторы следующего поколения (например, так называемый Телескоп Эйнштейна) смогут зарегистрировать такие сигналы.