уже знаем, что давление магнитного поля пропорционально квадрату величины поля. А поле растет как третья степень расстояния при приближении к компактному объекту. Стало быть, давление увеличивается как шестая степень удаления от поверхности! Очень быстро!
В падающем веществе плотность энергии (т. е. давление) определяется гравитацией. Мы можем оценить давление как ρv2 / 2. Здесь ρ – плотность вещества, а v – его скорость. Скорость есть просто скорость свободного падения:
Теперь рассчитаем плотность. Вещество втекает с радиуса гравитационного захвата, о котором мы говорили в приложении 4, с темпом Напомню, что эта величина имеет размерность [г / с]. Поскольку мы рассматриваем сферически симметричную ситуацию, то за единицу времени эти граммы распределяются по объему 4πr2v. Здесь 4πr2 – это площадь сферы, а v – скорость, т. е. расстояние, проходимое веществом за единицу времени. Значит, плотность будет равна:
Собираем теперь все вместе, чтобы получить выражение для давления в падающем веществе:
Таким образом, давление повышается при приближении к звезде, но довольно медленно. Значит, более быстрый рост давления магнитного поля приведет к остановке вещества. Это произойдет на расстоянии, которое мы будем называть радиусом магнитосферы, или альвеновским радиусом, названном в честь шведского физика Ханнеса Альвена (Hannes Alfven).
Чтобы определить этот радиус, надо просто приравнять давление падающего вещества к магнитному давлению:
Выразим отсюда радиус, обозначив его RA:
Теперь мы знаем, где магнитное поле останавливает падающее вещество. Если поле слишком слабое или темп аккреции слишком большой, альвеновский радиус может оказаться меньше радиуса нейтронной звезды. Значит, в такой ситуации влиянием поля можно пренебречь. В других случаях его необходимо учитывать.
Мы помним, что вещество представляет собой плазму, а потому не может двигаться поперек силовых линий[122]. Стало быть, плазма будет течь к магнитным полюсам (ситуация похожа на ту, которая приводит к полярным сияниям на Земле). Именно там выделится кинетическая энергия падающего вещества. Из-за этого магнитные полярные шапки на поверхности нейтронной звезды будут горячее остальной поверхности, т. е. будут сильнее излучать. Поскольку компактный объект вращается, то его блеск будет периодически меняться, и возникнет рентгеновский пульсар. Однако не может ли что-то еще предотвратить падение вещества на поверхность?
Падающее вещество сильно взаимодействует с магнитосферой, а она быстро вращается, так как жестко связана с нейтронной звездой. На расстоянии r скорость вращения будет составлять ωr. На каком-то расстоянии эта скорость сравняется со скоростью кругового вращения вещества под действием гравитационного поля. Если радиус магнитосферы больше этого критического расстояния (которое мы назовем радиусом коротации), то вещество будет остановлено: центробежная сила не позволит аккрецирующей плазме достигнуть поверхности. Из-за возникновения центробежного барьера вещество будет отбрасываться быстро вращающимся магнитным полем. Такую стадию назвали пропеллером. А для радиуса коротации мы можем записать простую формулу. Из получим:
При периоде вращения 10 с радиус коротации равен примерно 10 000 км. Это больше, чем альвеновский радиус нейтронной звезды с магнитным полем 1013 Гс на поверхности и темпом аккреции 1017 г / с (10 % от предельного). Иначе говоря, такая звезда не начнет аккрецировать.
Видно, что радиус коротации уменьшается с ростом частоты (т. е. с уменьшением периода вращения). Значит, быстровращающаяся нейтронная звезда начнет аккрецировать вещество, только если у нее слабое магнитное поле или же очень велик поток вещества (и то и другое приводит к уменьшению альвеновского радиуса). Значит, компактному объекту надо замедлить свое вращение, чтобы аккреция началась. К счастью для наблюдателей, это происходит довольно быстро, так как на стадии пропеллера интенсивное взаимодействие магнитного поля с окружающим веществом приводит к быстрому торможению вращения нейтронной звезды.
В Галактике и ее спутниках – Магеллановых Облаках – известны сотни двойных систем с аккрецирующими нейтронными звездами. Многие из них являются рентгеновскими пульсарами. Предоставляем читателю самостоятельно оценить их типичные периоды вращения из равенства радиуса коротации и альвеновского радиуса при стандартном магнитном поле 1012–1013 Гс и типичном темпе аккреции, соответствующем светимости около 10 % от эддингтоновской.
Как и многие другие тела, нейтронные звезды имеют атмосферу. И как всё у нейтронных звезд, атмосфера у них необычная. Из-за мощной гравитации на поверхности атмосфера оказывается очень тонкой. Мы сможем получить формулу для определения ее толщины, применять которую, кстати, можно не только к нейтронным звездам.
Представьте себе любую атмосферу, например земную. Газ не улетучивается в космос, потому что его удерживает земная гравитация. Но при этом газ и не выпадает на поверхность. Это происходит из-за того, что атмосфера нагрета. Равновесие обеспечивается балансом между силой гравитации и тем, что в нижних слоях атмосферы давление выше. Попробуем разобраться в этом на уровне формул, которые позволят нам сделать и количественные оценки.
Рассмотрим тонкий прямоугольный объем в атмосфере (хотя в целом атмосфера – это сферический слой, но если размер тела намного больше толщины атмосферы, то можно рассмотреть плоский случай). Он имеет массу M и объем V, равный произведению его площади S на толщину нашего тонкого слоя внутри атмосферы dh. Масса складывается из суммы масс отдельных частиц. Будем рассматривать атмосферу, преимущественно состоящую из атомов или молекул одного сорта. Массу одной частицы обозначим m, а их концентрацию (количество в единице объема) n. Тогда:
На этот слой действуют три силы: сила давления сверху, сила давления снизу и гравитация. Силу гравитации легко записать: это произведение массы слоя на ускорение свободного падения g. Сила давления – это произведение давления на площадь. Снизу давит сильнее, и если давление снизу мы обозначим P, то сверху оно меньше на небольшую величину dP.
Наш слой находится в равновесии, т. е. силы уравновешивают друг друга:
Это уравнение легко упростить, и мы получим – dP = mngdh. dP – отрицательная величина (давление падает с высотой).
Из школьной физики мы помним, что давление в идеальном газе – это плотность энергии движения составляющих его частиц. Каждая частица имеет энергию kT, где T – температура, а k – постоянная Больцмана. Значит, давление равно P = nkT. Можно считать, что в тонком слое температура меняется слабо, а изменение давления связано в первую очередь с уменьшением концентрации частиц при подъеме вверх (атмосфера становится разреженнее). Тогда dP = kTdn, где dn (тоже отрицательная величина) показывает, насколько концентрация частиц внизу слоя больше, чем вверху. Подставим это в нашу формулу и получим:
Теперь перепишем это и получим простое дифференциальное уравнение:
Мы уже сталкивались с похожим уравнением выше, а потому помним, что после интегрирования получим экспоненциальное решение:
где n0 – концентрация частиц на нулевой высоте, а h0=kT / (mg). Последняя величина как раз задает характерную толщину атмосферы: при подъеме на такую высоту концентрация частиц падает в e раз.
Теперь мы можем подставить значения концентрации частиц, температуры и ускорения свободного падения, характеризующие конкретную атмосферу, и получим ее характерную толщину.
В случае Земли температура равна примерно 300К, ускорение свободного падения – 10 м/с2 (что в системе СГС дает нам 1000 см/с2), а масса одной частицы примерно равняется 30 · 10–24 г. Постоянная Больцмана равна 1,38 · 10–16 эрг/К. В итоге получим, что характерная толщина земной атмосферы составляет около 1 млн см, т. е. 10 км.
А что у нейтронных звезд? Если мы говорим о достаточно молодых объектах с возрастами от нескольких сотен до сотен тысяч лет (именно такие компактные объекты удается наблюдать по тепловому излучению их поверхности), то температура составляет примерно 1 млн Кельвин. Типичный состав такой атмосферы – водород (если на нейтронную звезду натекло немного вещества) или железо. Соответственно, массы частиц или около 10–24 г, или 56 · 10–24 г. Ускорение свободного падения гигантское, его можно посчитать как GM / R2, где M – масса, а R – радиус компактного объекта. Получим огромную величину 1014 см/с2, т. е. толщина атмосферы от 1 мм (в случае железа) до 1 см (если основной газ – водород).
Удивительно, но даже такой тонкий слой вещества может сильно влиять на исходящее от поверхности излучение. Без влияния атмосферы мы видели бы от одиночных молодых нейтронных звезд практически идеальный тепловой спектр, а наблюдения показывают, что это не так. Из-за поглощения в толстой (несколько сантиметров!) водородной атмосфере фотоны низкой энергии выходят беспрепятственно лишь из ее внешних слоев, где температура немного ниже[123]. Наоборот, высокоэнергичные кванты рентгеновского излучения (а при 1 млн Кельвин поверхность испускает именно рентген) меньше поглощаются, поэтому достигают наших детекторов из более глубоких слоев. В результате регистрируемый спектр начинает отличаться от чернотельного.