писания природы сродни появлению ткачества. Мы теперь не просто описываем мир с помощью естественных слов языка, а можем, образно говоря, соткать, сшить материю, которая идеально ляжет на сложную форму мира, т. е. способны создать огромный гобелен, который не сделать из шкур и листьев.
Естественный язык основан на непосредственном опыте. Язык отражает основные особенности мышления человека (собственно, они развиваются вместе). Наш опыт определяется размерами человеческого тела, возможностями восприятия и обстоятельствами, например системой отсчета. Мы видим, что Солнце, Луна и звезды всходят и заходят, а себя ощущаем находящимися на неподвижной Земле (которая вовсе не кажется нам шаром, а тем более геоидом). Планеты смещаются на фоне звезд. Все обычные тела падают вниз (во времена Аристотеля не было еще шариков с гелием), и чем они тяжелее, тем быстрее достигают земли. Для нас очевидно, что, если сдвинуть предмет, он рано или поздно остановится. И т. д. и т. п. Теперь мы знаем, что мир устроен не совсем так, как нам представлялось. Но для этого понадобилось создать другой язык и научиться получать другой опыт. Это привело и к изменению типа мышления (по крайней мере, у некоторых).
Отличие математики от естественного языка в том, что она внезапно проявляется в реальном мире. Нельзя, бредя по неизведанным землям, вдруг понять: мы видим, что «дыр бул щыл»[16], равно как и что «убеш щур скум». А вот осознать, что колебательные процессы удобно описывать в терминах комплексных переменных, – можно. Равно как и понять, что гравитацию и пространство-время лучше описывать тензорами[17].
Прелесть математического языка в том, что математика активно развивается. Гораздо быстрее, чем естественные языки, поскольку они в основном откликаются на медленные и не столь уж многочисленные изменения во внешней среде (по крайней мере, именно такие изменения чаще остаются в языке, если сравнивать их с экстремальными поэтическими экспериментами). Даже быстрее, чем нужно. Математики как бы непрерывно свивают все новые и новые нити с разными свойствами, из которых можно делать ткани для самых необычных применений. При этом сами эти приложения еще неизвестны[18].
Первые нити и ткани создавались из естественного сырья – льна, шерсти, хлопка… Но постепенно пришло время синтетических тканей, и некоторые из них имеют совершенно удивительные свойства. Нельзя сделать космический скафандр из пальмовых волокон и ангорской шерсти. Даже на Земле постоянно нужны ткани с уникальными характеристиками, чтобы исследовать вулканы или нырять на большую глубину, заживлять раны или ставить спортивные рекорды. Для новых целей и новых миров нам нужны новые материалы. Для описания новых открытий нам также нужен новый язык.
Одежду из ткани, в отличие от одежды из листьев или шкур, можно точно подогнать по фигуре. Для этого есть два способа: или шить по мерке, или выбирать из множества вариантов готовой одежды. Первый лучше, но дороже и затратнее по времени. Используя наши методы описания природы, мы действуем похожим способом. Одна возможность состоит в выборе из уже готовых математических конструкций, тех, которые наилучшим образом подходят для решаемой задачи. Вторая – специально разрабатывать подходы применительно к конкретной проблеме. И то и другое позволяет не просто составить описание объектов или явлений на некотором языке, но и сопоставить описание, основанное на нашем понимании явлений (т. е. на некоей теории), с реальностью.
Скафандр долго изготавливается по индивидуальным меркам с учетом детальных анатомических особенностей конкретного космонавта. Защитные костюмы для работы с опасными вирусами и бактериями тщательно тестируются на предмет соответствия очень жестким требованиям. Также и в естественных науках мы можем добиваться очень точного количественного соответствия теоретического описания и экспериментальных данных, потому что математический метод позволяет представить наше описание в виде точно рассчитанных величин, и тогда не возникает проблем с различным толкованием, как это неизбежно происходит при использовании не столь четких средств выражения. Здесь хочется поспорить с известными строками Николая Гумилева: «А для низкой жизни были числа, / Как домашний, подъяремный скот, / Потому, что все оттенки смысла / Умное число передает».
Как раз словесное описание может содержать разные оттенки, за что мы его и любим. Численное (формульное) описание, наоборот, более ограниченно. Это, скорее, очень специализированный инструмент, который годится лишь для того, для чего создан. Зато в своей области применения он вне конкуренции.
Одежда (возможно, с момента своего появления) использовалась не только для того, чтобы сохранить тепло, укрыть от дождя и т. д. То, что мы носим, имеет еще и социальные, и эстетические функции. Ткани нужны не только для удовлетворения чисто утилитарных нужд, они используются и в искусстве. И это не только холст, на котором пишется картина. Ковры и гобелены, кружева и вышивка сами могут быть произведениями искусства. Напрашивается аналогия и с наукой, которая также нужна не только для практического применения. Точно так же, как работа ведущих модельеров состоит не том, чтобы одежда была теплее или долговечнее, ведущие математики и физики-теоретики чаще всего размышляют над задачами, далекими от сиюминутных бытовых нужд. Многие научные конференции напоминают показ авангардной моды тем, что демонстрируемые идеи покажутся очень странными для непосвященного слушателя. Его естественная реакция на дефиле: «Я в таком на улицу не выйду». В самом деле, эта одежда не предназначена для каждодневной носки. Но то, в чем мы ходим ежедневно, есть отголосок высокой моды. Причем, как правило, не самой современной. Так и в науке: многие высокотехнологичные вещи вокруг нас – результат научных исследований начала и середины XX века (а иногда и более ранних времен).
Образ нити возникает и тогда, когда мы вспоминаем о том, что математические методы позволяют добывать новое знание путем определенных манипуляций с формулами. Это относится и к естественным наукам, и к самой математике. Потянув за ниточку, мы можем распутать целый клубок загадок. Или иначе: брошенный на землю волшебный клубок начинает разматываться и ведет нас к цели. Именно это позволяет существовать теоретической физике, занимающейся явлениями, пока недоступными для наблюдений. Именно так было предсказано существование бозона Хиггса и кварков, позитрона и расширения вселенной. Забросив удочку или закинув сеть, никогда не знаешь, что выловишь. А ведь и для удочки, и для сетей нужны нити.
Люди придумали нити и ткани для создания одежды и других полезных (а иногда просто красивых) предметов. Точно так же и создание математического описания природы – не самоцель. Это метод, позволяющий выйти на принципиально другой уровень постижения явлений реального мира и нашего представления о нем. И главное, метод, прекрасно приспособленный для сравнения нашего понимания с объективной реальностью, что позволяет отбрасывать неправильные гипотезы. Мы можем проводить измерения (эксперименты, наблюдения), получая числа, а затем сопоставлять их с теми числами, которые дают нам наши теории, путем строго количественного сравнения. Также мы можем использовать саму математику для получения новых результатов, касающихся реального мира, потому что единая математическая структура в заметной степени соответствует единой структуре физической реальности.
Жизнь не стоит на месте. Теперь мы можем, минуя стадию нити, создавать ткани из искусственных материалов. Они начинают напоминать «одежду из баллончика» в романе Станислава Лема «Возвращение со звезд». Аналогом этого в современных научных методах может быть, например, численное моделирование, основанное на клеточных автоматах. Наш способ описания мира постоянно развивается, эволюционирует.
Часть IIЭволюция
А. В РАЗВИТИИ ТЕОРИЙ (НАПРИМЕР, ФИЗИЧЕСКИХ) СУЩЕСТВУЕТ ОПРЕДЕЛЕННАЯ ПРЕЕМСТВЕННОСТЬ, СОСЕДСТВУЮЩАЯ С РЕВОЛЮЦИОННЫМИ ИЗМЕНЕНИЯМИ ПАРАДИГМ.
Б. В ХОДЕ РАЗВИТИЯ НАУКИ КАКИЕ-ТО ТЕОРИИ РАЗВИВАЮТСЯ, ИНОГДА ПРЕОБРАЖАЯСЬ ПОЧТИ ДО НЕУЗНАВАЕМОСТИ, А КАКИЕ-ТО «ВЫМИРАЮТ». ЕСЛИ ТЕОРИЯ НЕ «ВЫМИРАЕТ», ТО ЧАСТО СТАРЫЕ ФОРМЫ ОСТАЮТСЯ В ХОДУ ДЛЯ ОПИСАНИЯ НЕЭКСТРЕМАЛЬНЫХ ЯВЛЕНИЙ.
В. ЭВОЛЮЦИЯ НАУКИ ДАЛЕКА ОТ ОКОНЧАНИЯ. ВО МНОГОМ ОНА ТОЛЬКО УСКОРЯЕТСЯ. ЕСТЬ ЕЩЕ МНОГО ЯВЛЕНИЙ, К КОТОРЫМ НАМ НАДО «ПРИСПОСОБИТЬ» НАШИ ТЕОРИИ.
Г. ФИЗИКА, ХИМИЯ И МАТЕМАТИКА НА ДРУГИХ ПЛАНЕТАХ ДОЛЖНЫ БЫТЬ ПОХОЖИ НА НАШИ.
Глава 4«Эволюционное древо формул»
Поразительным фактом является наличие связей между всеми существующими биологическими видами. У нас у всех есть единый общий предок – LUCA[19]. Разнообразие существующего животного мира объясняется эволюцией, которая не имеет долговременной цели. На каждом отдельном этапе «решается» конкретная задача. В результате возникает множество видов, занимающих всевозможные биологические ниши и связанных друг с другом. Иногда эволюция была относительно плавной, а иногда происходили революционные изменения, в том числе связанные с внешними катастрофами. При этом важно, что наряду с высокоразвитыми сложными организмами продолжают существовать и простейшие формы жизни, мало изменившиеся за сотни миллионов лет, поскольку и для них есть свои ниши, условия в которых менялись незначительно.
В развитии науки можно увидеть множество аналогий с биологической эволюцией. Разные теории создавались в разное время, когда экспериментальные данные находились на разном уровне. Целью в первую очередь было (и остается) объяснение конкретных, наблюдаемых сейчас фактов. Именно так происходило совершенствование и развитие. При этом новые модели в той или иной степени строились на основе уже имеющихся. Хотя иногда случались и научные революции, значительно менявшие текущую парадигму. Так же, как в мире живых существ, мы видим, что более продвинутые теории, имеющие более широкую область применимости и учитывающие тонкие эффекты, часто не вытесняют полностью простые, но эффективные старые подходы. Так, мы продолжаем активно пользоваться простой ньютоновской физикой там, где эффекты теории относительности малы, т. е. ими можно пренебречь.