А в описании машин Тьюринга десятью годами ранее он также обосновал свою формулировку идеи «механического» дополнительным аргументом о «записи инструкций». Акцент ставился не на процессы, происходящие внутри мозга, не на внутреннюю работу мозга, а на ясные инструкции, которым человекработник мог слепо следовать. В 1936 г. на мысль о подобных «записях инструкций» его натолкнули правила Шербонской школы, прочие нормы общения, и, конечно же, математические формулы, которые можно было применять «не думая». Но к 1945 г. многое изменилось, и «записи инструкций», казавшиеся в 1936 г. довольно фантастическими, как и теоретические логические машины, стали весьма конкретными и вошли в практику. Обилие изобилия было одним из посланий, «основанных на машине и вскрываемых машиной», и эти машины были машинами Тьюринга, в которых значение имело логическое преобразование символов, а не физическая сила. И при проектировании таких машин, и при разработке процессов, которые можно было бы поручить людям, действующим, как машины, т. е. «рабам», они эффективно записывали утонченные «инструкции».
Это был другой, но отнюдь не несочетающийся подход к идее «мозга». Именно взаимосвязь между двумя подходами, возможно, более всего воодушевила Алана – совсем как в Блетчли велась постоянная игра между человеческим разумом (агентурной разведкой) и использованием машинных, или «рабских» методов. Его теория «совокупности доказательств» показала, как преобразовывать определенные виды человеческого распознавания, суждений и решений в форму «записи инструкций». Его методы игры в шахматы поднимали вопрос: где можно было бы прочертить линию между «разумным», осмысленным, и «механическим»? Его точка зрения, выраженная с позиции принципа имитации, заключалась в том, что такой линии не было, да и никогда он не проводил резкого различия между «состоянием ума» и «записью инструкций», как двумя подходами к проблеме согласования понятий свободы и детерминированности.
Как писал он позднее в 1948 г., «нам не нужно иметь бесконечное множество разных машин, выполняющих разные задачи. Одной единственной будет достаточно. Инженерно-техническая проблема производства разных машин для разных задач заменяется офисной работой «программирования» универсальной машины для выполнения этих задач».
«Мозг» вырос не из опытного познания вещей, а из осознания основополагающих идей. Универсальная машина должна была быть не просто машиной, авсемимашинами сразу. Она должна была заменить не только физическое оборудование Блетчли, но все рутинные операции – почти все, что эти десять тысяч человек делали. И даже «разумная» работа первоклассных аналитиков должна была лишиться своей сакральности. Так как универсальная машина могла также выполнять работу человеческого мозга. Все, что бы не делал мозг, любой мозг, могло в принципе быть представлено, как «дескриптивное число» на ленте Универсальной машины. Такова была его концепция.
Но в проекте Универсальной машины Тьюринга не было ничего, что бы указывало на ее практическое предложение. В частности, не было информации о ее операционной скорости. Таблицы вычислимых чисел могли быть использованы людьми, посылающими друг другу открытки, без теоретической аргументации. Но коль скоро речь шла о практическом применении универсальной машины, то она должна была выполнять миллионы шагов в рациональном режиме. Эту потребность в скорости могли обеспечить только электронные компоненты.
Он понял, как создать мозг – неэлектрическиймозг, как он, возможно, воображал себе до войны, аэлектронныймозг. И где-то в 1944 г. мать Алана слышала, как он рассказывает о «своих планах по созданию универсальной машины и о том вкладе, которое такая машина могла бы оказать психологии в изучении человеческого мозга».
Помимо дискретности, надежности и скорости учитывался и еще один важный фактор: величина. На «ленте» универсальной машины должны были поместиться и «дискретные числа» машин, которые она бы имитировала, и ее операции. Абстрактная универсальная машина 1936 г. была оснащена «лентой» бесконечной длины, а это значило, что, несмотря на то, что на любом этапе количество использованной ленты могло быть ограничено, тем не менее, допускалось, что больше места всегда можно было обеспечить.
В реальной, действующей машине место всегда ограничено по объему. И по этой причине ни одна физическая машина не могла на практике выступать действительно универсальной машиной. В «вычислимых числах» Алан выдвинул предположение об ограниченности человеческой памяти в своем объеме. Если это было так, тогда и сам человеческий мозг мог хранить только ограниченное количество моделей поведения – «таблиц», и для записи их всех требовалась достаточно большая лента. В таком случае ограниченность любой реальной машины не могла препятствовать ей быть похожей на мозг. Вопрос заключался в том, насколько большая «лента» потребовалась бы для машины, которую можно было создать на практике: достаточно для того, чтобы она представляла интереса, но не больше того, что было бы технически целесообразно и осуществимо. И как можно было организовать такое хранилище, т. е. «память» машины без неслыханных затрат в виде электронных ламп?
Алан описал своему помощнику универсальную машину и ее «ленту», на которой должны были храниться инструкции. И они вместе начали раздумывать над способами, которые бы позволили получить «ленту», которая могла бы хранить такую информацию. Вот так и случилось, что на этой удаленной станции новой Империи радиотехнической разведки, работая с одним помощником в маленькой хижине и обдумывая свои идеи в свободное время, английский гомосексуалист, атеист и математик замыслилкомпьютер.
И речь здесь не о том, как мир воспринял его, да и мир не был уж совсем несправедлив. Изобретение Алана Тьюринга должно было занять свое место в историческом контексте, в котором он не был ни первым в числе тех, кому приходила в голову идея создания универсальных машин, ни единственным, кто додумал в 1945 г. электронную версию универсальной машины.
Конечно же, на тот момент уже существовали самые разные машины, сберегающие (сохраняющие) мысли, начиная с древних счет. В общих чертах их можно было классифицировать в две категории, «аналоговые» и «цифровые». Две машины, над которыми работал Алан перед самой войной, были образчиками каждого из этих типов. Алан, разумеется, был предан цифровому подходу, вытекающему из концепции машины Тьюринга, с упором на ее потенциальную универсальность. Ни одна аналоговая машина не могла претендовать на универсальность, такие устройства создавались, чтобы быть физическими аналогами конкретных систем с определенными задачами. Следовательно, его идеи должны были найти свое место среди проектов цифровых вычислительных машин и составить им конкуренцию.
И не успел! Американцы опередили Алана, создавЭДВАК– Электронный дискретный переменный компьютер. Автором был давний знакомый Алана – Джон фон Нейман.
30 января 1945 г. фон Нейман написал, что ЭДВАК проектировался для решения трехмерных «аэродинамических задач и проблем ударных волн… расчета воздействий снарядов, бомб и ракет… в области метательных и бризантных взрывчатых веществ». Предварительный доклад о машине ЭДВАК пронизывал (отражая интересы фон Неймана) более теоретический рефрен, привлекавший внимание к аналогии между компьютером и нервной системой человека. И одним из инструментов для этого служило слово «память». В таком ключе это действительно оказывалось «созданием мозга». Однако, акцент доклада был сделан не на абстрактном тезисе о «состоянии ума», а на сходствах механизмов ввода/вывода данных и афферентных (чувствительных, центростремительных) нервов и эфферентных (двигательных, центробежных) нервов соответственно. Доклад также апеллировал к статье чикагских неврологов Уоррена Маккалока и Уолта Питтса (1943 г.), в которой активность нейронов анализировалась логическим языком, и использовал их символизм для описания логических связей электронных компонентов.
Так что победу у британского новаторства на самом финише вырвала американская публикация – и это в то время, когда все следили за западом. Американцы победили, и Алан оказался вторым. На этот раз, правда, приоритет американцев обернулся плюсом для его планов – ведь он задал им политический и экономический импульс, который одним умозрительным идеям Тьюринга иначе не видать было бы никогда.
Но Алана эта неудача не остановила. Вскоре он придумал для нового проекта электронной вычислительной машины Тьюринга более счастливый акроним, в сравнении с бездушным ЭДВАК: АВМ – «Автоматическая вычислительная машина». И она стала более универсальной, чем ЭДВАК.
Ведь Алан начал первым процесс написания программ (таблиц команд), и считал это «очень увлекательным» занятием. Он создал нечто очень оригинальное и при том именно свое. Он изобрел искусство компьютерного программирования. Это был полный разрыв со старомодными арифмометрами. Они объединяли суммирующие и умножающие механизмы, да еще они заправлялись бумажной лентой, без которых они не работали исправно. Они были машинами для совершения арифметических действий, для которых логическая структура была лишь обременением. АВМ была принципиальной иной машиной. Она задумывалась, как машина, выполняющая программы «каждого известного действия». Акцент делался на логическое структурирование и управление процессом работы, а арифметические устройства добавлялась только ради быстрого доступа к наиболее часто использующимся операциям.
На настольных счетных машинах цифры от 0 до 9 становились видны на регистрах и клавиатуре, и у оператора могло возникать ощущение, будто каким-то образом цифры хранятся в самой машине. В действительности, в них не было ничего, кроме колес и рычагов управления, однако иллюзия присутствия цифр в машине была сильна.