Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной — страница 29 из 72

Метрика в современных теориях гравитации определяет свойства пространства-времени.

Две главные особенности черных дыр – горизонт событий и сингулярность. Горизонт событий иногда представляют как мембрану, проницаемую лишь в одну сторону. С точки зрения удаленного наблюдателя, падающему предмету для достижения горизонта требуется бесконечное время. Кроме того, по мере приближения к нему все заметнее становится эффект гравитационного красного смещения. Однако, с точки зрения падающего наблюдателя, все происходит за конечное время, причем локальными экспериментами он никак не может установить момент пересечения горизонта – сам горизонт является не физической, а лишь координатной особенностью.

Размер горизонта в метрике Шварцшильда определяется простой формулой, является сферически симметричным и зависит (линейно) только от массы. В более сложных метриках (для вращающихся и/или заряженных черных дыр) возникает несколько критических радиусов.

А вот сингулярность является в ОТО истинной особенностью. Роджер Пенроуз (Roger Penrose) и Стивен Хокинг (Stephen Hawking) доказали неизбежность формирования сингулярностей в рамках ОТО. Любой объект, попавший под горизонт событий, попадает в сингулярность, и расчет его дальнейшей судьбы пока невозможен. В решении Шварцшильда (невращающейся незаряженной черной дыры) сингулярность является точечной, а в случае вращающихся черных дыр – кольцом. В некоторых, пока неподтвержденных, теориях (например, петлевой квантовой гравитации) удается избавиться от сингулярностей. В других моделях сингулярности приобретают интересные дополнительные свойства.

В астрофизике выделяют несколько типов черных дыр. Это, во-первых, первичные черные дыры – гипотетические объекты, возникающие в ранней Вселенной. Во-вторых, черные дыры звездных масс, являющиеся продуктами эволюции массивных звезд (существуют десятки кандидатов в такие объекты). В-третьих, сверхмассивные черные дыры. Наконец, выделяют также класс черных дыр промежуточных масс (между звездными и сверхмассивными), которые были придуманы в качестве гипотезы, объясняющей свойства так называемых ультрамощных рентгеновских источников.

Радиус Шварцшильда – это радиус горизонта событий для невращающейся незаряженной черной дыры.

Черные дыры удается наблюдать благодаря аккреции, гравитационным эффектам (от простого вращения объектов вокруг черных дыр до гравитационного линзирования), а также за счет испускания гравитационных волн двойными черными дырами.

Согласно гипотезе о космической цензуре, все образующиеся сингулярности должны быть закрыты горизонтом.

В нашей Галактике должно существовать около 100 млн черных дыр звездных масс (соответственно, ближайшая одиночная черная дыра должна находиться на расстоянии порядка 100 световых лет от нас). Большую часть этих объектов крайне трудно наблюдать. В настоящее время есть несколько случаев наблюдения гравитационного микролинзирования, которые можно объяснить линзированием на черных дырах, а также несколько десятков надежных кандидатов в черные дыры в тесных двойных системах.

7.2. Кандидаты в черные дыры в тесных двойных системах

В настоящее время основные кандидаты в черные дыры звездных масс находятся в тесных двойных системах. Это связано с тем, что наличие близкого компонента делает возможным как появление яркого (обычно рентгеновского) источника за счет аккреции, так и определение параметров компактного объекта, дающее возможность идентифицировать его в качестве кандидата в черные дыры.

Выпадение вещества на черную дыру может происходить как без выделения энергии (аккреция пыли), так и с выделением большого количества энергии, достигающей 42 % от максимально возможного значения, равного mc2 (такое происходит при аннигиляции). Поэтому аккреция на максимально вращающуюся черную дыру является вторым по эффективности механизмом выделения энергии в природе и уступает лишь аннигиляции. Учитывая, что количество антивещества крайне ограничено, аккреция на черные дыры является самым эффективным способом выделения энергии среди широко распространенных.

Аккреция – процесс выпадения вещества на массивный объект, происходящий в основном за счет гравитационного притяжения.

Если падающее на черную дыру вещество образует так называемый аккреционный диск, за счет вязкости оно разогревается до высоких температур, что приводит к выделению большого количества энергии. Теория дисковой аккреции начала активно развиваться в начале 1970-х гг. в классических работах Николая Шакуры, Рашида Сюняева, Игоря Новикова и Кипа Торна.

Полость Роша – область вокруг звезды, в которой ее гравитация контролирует движение легких тел.

Большой поток вещества может быть обеспечен в тесных двойных системах. На определенном этапе эволюции черная дыра может иметь в качестве компаньона звезду, заполнившую свою полость Роша (см. раздел 4.4 «Двойные и кратные звезды. Аккреция»). Вещество начинает активно перетекать на черную дыру через так называемую внутреннюю точку Лагранжа, в результате формируется аккреционный диск и появляется яркий рентгеновский источник.

Светимость аккрецирующего источника имеет верхний предел, называемый эддингтоновской светимостью. Его появление связано с давлением света: поток излучения может стать настолько велик, что остановит падающее вещество. Этот предел зависит от массы аккрецирующего объекта и свойств падающего вещества, в случае реалистичных двойных систем с черными дырами он составляет около миллиона светимостей Солнца для черной дыры массой около 25–30 солнечных. Предел линейно растет с ростом массы, поэтому для объяснения источников со светимостями порядка нескольких миллионов или десятков миллионов светимостей Солнца были предложены черные дыры промежуточных масс, имеющие более высокий предел.

В двойных системах возможно достаточно надежное определение масс компонент. Наличие яркого рентгеновского источника позволяет заподозрить присутствие в системе компактного объекта – нейтронной звезды или черной дыры. Отсутствие регулярных пульсаций излучения, а также некоторые спектральные особенности могут дать косвенные аргументы в пользу черной дыры, окончательный вывод делается по измерению массы. Для нейтронных звезд существует верхний предел массы (предел Оппенгеймера – Волкова), который составляет примерно 2–3 массы Солнца. Если наблюдения показывают, что масса компактного объекта превосходит три солнечных, то он становится хорошим кандидатом в черные дыры (типичные измеренные массы черных дыр в двойных системах составляют 5–10 солнечных).

Внутренняя точка Лагранжа – место соединения полостей Роша в двойной системе.

Первый хороший кандидат в черные дыры был открыт в начале 1970-х гг. Это рентгеновская двойная система Лебедь Х-1, в которой спутником компактного объекта является яркая звезда-гигант. Оценки массы компактного объекта показали, что она, вероятнее всего, превосходит три солнечных. Сейчас известно несколько десятков кандидатов в черные дыры в рентгеновских двойных системах, в большинстве из них спутником компактного объекта является маломассивная нормальная звезда. Значительную часть времени такие системы проводят в так называемом спокойном состоянии, когда рентгеновская светимость становится крайне низкой. Это свойство является косвенным аргументом в пользу гипотезы о черной дыре, поскольку в системах с нейтронными звездами энерговыделение не падает до таких низких уровней.

Модель дисковой аккреции была создана в работах Николая Шакуры, Рашида Сюняева, Игоря Новикова и Кипа Торна в начале 1970-х гг.

Формально существование черных дыр остается гипотезой. Доказать отсутствие поверхности и наличие горизонта у астрофизического объекта – сложная задача. Однако существует ряд хороших косвенных аргументов в пользу черных дыр. Один из них связан с отсутствием феномена рентгеновских барстеров в системах с кандидатами в черные дыры: накапливание гелия на поверхности аккрецирующей нейтронной звезды приводит к термоядерному взрыву, наблюдаемому как мощная рентгеновская вспышка, а в аналогичных системах с кандидатами в черные дыры такие вспышки не наблюдаются. Самое простое объяснение состоит в том, что накапливания вещества не происходит из-за отсутствия поверхности. К сожалению, это лишь косвенный аргумент, и он не может служить окончательным доказательством существования черных дыр.

В настоящее время наиболее надежными свидетельствами в пользу существования черных дыр являются наблюдения гравитационно-волновых всплесков. Первое такое событие было зарегистрировано установками LIGO в сентябре 2015 г., когда наблюдалось слияние двух компактных объектов с массами около 35 и 30 масс Солнца. Весь комплекс наблюдательных данных прекрасно объясняется в рамках модели слияния двух черных дыр.

7.3. Сверхмассивные черные дыры

Известные нам сверхмассивные черные дыры располагаются в центрах галактик. В основном речь идет о галактиках, обладающих выраженной сферической составляющей – так называемым балджем (см. раздел 10.3 «Сверхмассивные черные дыры и активные ядра»). Поэтому, скажем, небольшие иррегулярные галактики, а также дисковые галактики без балджа, по всей видимости, не содержат сверхмассивных черных дыр. Обычно чем больше масса балджа, тем больше масса черной дыры, хотя есть много примеров отклонений от этой простой зависимости.

Квазары и блазары – сверхмассивные черные дыры, которые находятся в центрах крупных галактик и могут проявлять высокую активность.

Самым надежным способом идентификации сверхмассивной черной дыры и определения ее массы является наблюдение вращения объектов на близком расстоянии вокруг нее. Это могут быть звезды (как в случае нашей Галактики), газ или мазерные источники[7]. В последнем случае удается с высокой точностью определять массы дыр в галактиках, расположенных в десятках миллионов световых лет от нас. Кроме того, есть несколько косвенных способов оценки массы черной дыры, в том числе основанных на известных корреляциях массы дыры с какими-нибудь параметрами галактики или принимаемого излучения. Наконец, заподозрить существование сверхмассивной черной дыры мы можем по наблюдениям активности в галактическом ядре.