Чем массивнее балдж галактики, тем массивнее черная дыра в ее центре.
Существует много типов активных ядер галактик, имеющих разные наблюдательные проявления: радиогалактики, квазары, блазары, лайнеры, сейфертовские галактики и др. Значительную долю источников удается объяснить в рамках «единой модели», в которой разные проявления активности объясняются разной ориентацией системы активного ядра относительно наблюдателя. Аккрецирующая черная дыра окружена диском (кажется невероятным, но современные методы позволяют изучать структуру дисков вокруг далеких сверхмассивных черных дыр), а также газопылевым тором. Из внутренней части этой системы перпендикулярно плоскости диска может бить струя (джет), вещество в которой движется с околосветовой скоростью, причем протяженность некоторых струй достигает миллиона световых лет! Если мы смотрим вдоль струи, то видим очень активное и быстропеременное ядро – блазар. Если же мы смотрим с ребра, то сам центральный источник закрыт от нас тором, но мы можем видеть активность, связанную с внешними частями струи (разумеется, возможен и ряд промежуточных случаев).
Мы наблюдаем активные ядра галактик во всех диапазонах спектра.
Мы наблюдаем активность черной дыры, пока существует достаточно мощный приток газа. Однако иногда происходят спорадические вспышки, связанные с приливным разрушением отдельных звезд: если звезда пролетает слишком близко от черной дыры, то мощные приливные силы могут разорвать ее, превратив в плотное облако газа. Такое облако создаст на какое-то время аналог диска вокруг черной дыры – возникает яркий источник. Такие источники стали открывать в 1990-е гг., когда благодаря работе спутника ROSAT (ROentgen SATellite, Рентгеновский спутник) появилась возможность постоянного мониторинга большого числа объектов в рентгеновском диапазоне. Источники, связанные с приливным разрывом звезд, удается надежно идентифицировать не только по их положению в центрах галактик, но и по характерной спадающей кривой блеска.
Активность центральной черной дыры может быть стимулирована слиянием галактик – в этом случае мощные потоки газа могут направиться в центральную область, питая активное ядро. Однако важно помнить, что если сливаются две крупные галактики, то в центре каждой из них должна быть сверхмассивная черная дыра, и со временем обе черные дыры окажутся в центре объединенной галактики, образовав тесную пару (такие объекты наблюдаются). Затем под действием гравитационного излучения и взаимодействия с объектами в центральной части галактики дыры будут постепенно сближаться, пока не сольются, породив мощный всплеск гравитационного излучения. Косвенно такие всплески, вероятнее всего, можно будет зарегистрировать по высокоточным наблюдениям коррелированных сбоев периодов миллисекундных пульсаров или по астрометрическим наблюдениям в рамках проекта Gaia, а в будущем непосредственная регистрация станет возможной благодаря созданию космической гравитационно-волновой антенны eLISA.
В результате слияний галактик происходят слияния сверхмассивных черных дыр.
После слияния получившаяся черная дыра может получить значительную скорость – до сотен километров в секунду. Это может позволить ей вылететь из центра небольшой галактики или же существенно сместиться из самого центра крупной (последнее, возможно, наблюдается в нескольких галактиках). Вылет должен приводить к существованию заметного количества тяжелых черных дыр в гало галактик и в межгалактическом пространстве. Такие объекты могли выбрасываться на ранних стадиях формирования галактик, когда масса их гало была не слишком большой и сами черные дыры еще не успели набрать очень большую массу.
Сверхмассивные черные дыры успевают возникнуть в течение первого миллиарда лет жизни Вселенной.
Существует несколько вариантов появления сверхмассивных черных дыр, и, по всей видимости, все они могут реализовываться в природе. Самый консервативный механизм связан с самыми первыми звездами, которые могли быть весьма массивными и в конце своей короткой жизни порождали черные дыры с массами около 100–200 масс Солнца. В процессе иерархического скучивания эти черные дыры (чьи массы могли немного увеличиться за счет аккреции) попадали в центры формирующихся структур, где за счет слияний и дальнейшей аккреции постепенно увеличивали свою массу. За многие миллиарды лет они могли вырасти до массы в миллиарды масс Солнца.
Однако наблюдения показывают, что уже на красных смещениях z ≈ 5 – 10, спустя всего лишь сотни миллионов лет после образования первых звезд, существуют массивные черные дыры с массами в десятки миллионов солнечных. От момента формирования «зародышевых» черных дыр прошло менее миллиарда лет, и, начав с массы 100–200 солнечных, невозможно так быстро вырасти до десятков или сотен миллионов. Поэтому первые звезды здесь уже не помогут, необходимы сценарии, в которых черные дыры рождаются с массами в несколько тысяч или даже десятков тысяч масс Солнца.
Поэтому были придуманы еще два сценария. В одном из них происходит прямой коллапс массивного облака газа в черную дыру – это теоретически позволяет формировать самые массивные зародыши сверхмассивных черных дыр с массами до сотен тысяч масс Солнца. В другом сценарии к формированию черной дыры приводит эволюция плотного скопления звезд в ядре молодой галактики – такие скопления реально наблюдаются во многих галактиках, в том числе и в нашей. Подходящие для формирования черных дыр скопления звезд могут возникать в гало с массой около 100 млн масс Солнца уже на z = 15. Затем часть звезд скопления довольно быстро может образовать в его центральной части очень массивную звезду с массой более 1000 солнечных, а такой объект очень быстро должен сколлапсировать в черную дыру. Иногда, как показывают расчеты, масса такой черной дыры может достигать нескольких тысяч масс Солнца. В обоих сценариях можно получить достаточно массивные объекты, которые потом, активно аккрецируя газ и сливаясь с другими черными дырами, могут за несколько сотен миллионов лет превратиться в настоящих монстров.
Массы черных дыр растут в результате аккреции газа и слияний.
Итак, слияния черных дыр и аккреция на них газа могут позволить за время эволюции нарастить массу до пары десятков миллиардов масс Солнца – больше, чем у небольшой галактики. Неудивительно, что самые массивные черные дыры находятся в центрах массивных галактик, расположенных обычно в центрах крупнейших скоплений.
10.4. Скопления галактик и крупномасштабная структура
На масштабе, превосходящем примерно 400–500 млн световых лет, вещество во Вселенной распределено достаточно равномерно. Однако на меньшем масштабе можно увидеть скопления и сверхскопления галактик. Совокупность скоплений, сверхскоплений и гигантских пустот между ними (так называемых войдов) формирует крупномасштабную структуру Вселенной, имеющую ячеисто-волокнистый вид.
На масштабе в сотни миллионов световых лет и больше Вселенная имеет ячеисто-волокнистую структуру.
Скопления галактик имеют массу порядка 1014–1015 масс Солнца (в основном это темное вещество). Именно исследования скоплений позволили Фрицу Цвикки в 1933 г. прийти к выводу о необходимости существования большой скрытой (невидимой) массы для объяснения скоростей галактик в этих образованиях. Барионное вещество в скоплениях в основном содержится в виде горячего (десятки миллионов градусов) межгалактического газа, а на звезды приходится масса, в среднем в десять раз меньшая.
Размеры скоплений обычно составляют примерно 10–30 млн световых лет, в них входят от сотни до тысяч крупных галактик. Тенденцию туманностей «собираться в группы» (тогда еще не знали о том, что это галактики) заметили более 200 лет назад. Но достоверное знание о существовании скоплений из сотен галактик появилось менее 100 лет назад – в 1920–1930-е гг.
Скопления галактик имеют размеры около 10–30 млн световых лет и обычно включают сотни крупных галактик.
Крупные скопления галактик в настоящий момент являются наиболее массивными и протяженными гравитационно связанными структурами во Вселенной. Если темная энергия (см. раздел 11.6 «Ускоренное расширение Вселенной. Темная энергия. Будущее Вселенной») объясняется космологической постоянной, то скопления галактик сохранятся и в далеком будущем, однако будут удаляться друг от друга. Другие варианты эволюции темной энергии могут привести к иным сценариям дальнейшей эволюции крупномасштабной структуры.
Массивные скопления галактик в основном сформировались на красных смещениях z < 2, т. е. примерно 10 млрд лет назад, однако процесс эволюции скоплений продолжается и в наши дни. На больших красных смещениях мы не видим собственно скоплений – там наблюдаются сгущения, называемые протоскоплениями галактик, и мы видим их такими, какими они были спустя пару миллиардов лет после Большого взрыва. В настоящий момент они, конечно, превратились в скопления, но наблюдать их современное состояние мы уже не cможем – они находятся за нашим горизонтом событий (см. раздел 11.2 «Горизонт частиц и горизонт событий. Возраст Вселенной»). В 2012 г. группа японских астрофизиков – Дзюн Тошикава (Jun Toshikawa) и его коллеги – заявила об обнаружении протоскопления на красном смещении z ~ 6, что соответствует примерно миллиарду лет после начала расширения.
Согласно современным моделям существование крупномасштабной структуры и ее элементов обязано своим происхождением первичным флуктуациям плотности, возникающим на стадии инфляции. В основном структура сформирована темным веществом, которое по массе превосходит обычное вещество примерно в пять раз. Неоднородности в распределении темного вещества начинают расти еще в ранней Вселенной, а по окончании эпохи рекомбинации начинается и рост флуктуаций обычного (барионного) вещества. Первыми успевают сколлапсировать небольшие неоднородности, поэтому в начале во Вселенной появляются звезды, потом галактики и лишь потом скопления. Еще более крупные образования – сверхскопления – к настоящему времени не успели сколлапсировать.