Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной — страница 50 из 72

До начала XX в. в астрономии доминировали рефракторы.

При изготовлении линз требования к точности формы поверхности не столь велики, как требования к точности поверхности зеркал рефлекторов. Вдобавок поверхность линзы сферическая, что упрощает ее полировку. Кроме того, в течение долгого времени не удавалось сделать зеркала с достаточно высоким коэффициентом отражения, поэтому в рефлекторах терялось много света. Требования многих астрономических наблюдений XVII–XVIII вв. и даже первой половины XIX в. (астрометрические наблюдения, визуальные наблюдения планет и т. п.) хорошо удовлетворялись телескопами-рефракторами. Поэтому именно они главенствовали вплоть до начала XX в.

Основным недостатком рефракторов, из-за которого они в итоге уступили рефлекторам, является невозможность создания большого объектива. Линза становится слишком тяжелой и деформируется под действием собственного веса (интересно, что при малых диаметрах линзы, как правило, менее подвержены деформациям, чем зеркала). Большие телескопы-рефлекторы, в которых фокусирующим элементом является вогнутое зеркало, лишены этого недостатка, поскольку даже тяжелое зеркало можно поддерживать сзади по всей площади, что позволяет избежать прогиба. Кроме того, у рефлекторов отсутствует хроматическая аберрация. Эти достоинства позволили рефлекторам на короткий период в конце XVIII – начале XIX в., во время работы Уильяма Гершеля, стать основными поставщиками новых открытий.

Однако долгое время не удавалось достичь достаточно высокой точности обработки поверхности крупных зеркал. Для достижения необходимого качества изображения отклонения от точной формы не должны превышать 1/8 от длины волны используемого излучения. Поверхность зеркала должна быть не сферической, а более сложной в изготовлении параболической (именно такие зеркала использовались первые 200 лет после изобретения рефлектора), поэтому создать высококачественный рефлектор очень непросто. Кроме того, первые зеркала были металлическими и достаточно быстро тускнели, так что их приходилось заново полировать. Чтобы рефлекторы вышли на первый план, понадобилось разработать технологию изготовления стеклянных зеркал с покрытием поверхности серебром (а позднее и более устойчивым алюминием), что произошло только во второй половине XIX в.



К концу XIX в. рефракторы достигли предельного размера (чуть более одного метра), и последние сто с лишним лет все крупные телескопы являются рефлекторами. Развитие технологий позволило создавать тонкие составные зеркала малого удельного (на единицу площади) веса, что открыло дорогу к созданию многометровых инструментов. На сегодняшний день крупнейшие наземные телескопы имеют диаметр основного зеркала около 10 м.

В рефлекторах объективом является вогнутое зеркало.

Зеркала рефлекторов имеют параболическую (системы Ньютона и Кассегрена: часто используются, особенно в небольших инструментах), гиперболическую (системы Ричи – Кретьена: например, космический телескоп Hubble, а также большинство крупных наземных инструментов) или сферическую (системы Шмидта) форму поверхности. Фокус основного зеркала оказывается внутри телескопа, поэтому только на очень крупных инструментах регистрирующие приборы могут быть расположены прямо в основном фокусе. Обычно используются дополнительные оптические элементы, которые отводят свет в сторону или в отверстие в основном зеркале (дополнительные элементы могут также корректировать изображения, позволяя уменьшить влияние аберраций). Существует много схем телескопов-рефлекторов, каждая из них имеет различные преимущества, и это используется при проектировании и эксплуатации.

За счет многократного прохождения света по трубе телескопа, а также из-за отсутствия хроматической аберрации телескопы-рефлекторы могут быть достаточно компактными и светосильными. Яркость получаемого с помощью телескопа изображения тем выше, чем больше относительное отверстие – отношение диаметра объектива телескопа к его фокусному расстоянию[16]. Для телескопов-рефракторов типичными значениями являются 1/10–1/15 (часто относительное отверстие обозначается как диаметр объектива в долях фокусного расстояния, например f/10), такие телескопы имеют довольно большую длину, что усложняет их эксплуатацию. Для рефлекторов характерны гораздо большие относительные отверстия – 1/3–1/5 (а иногда даже 1/2), такие инструменты довольно компактны, и это немаловажный фактор для обсерваторий, если задуматься о размерах полноповоротного купола для телескопа с диаметром объектива в несколько метров.

Все современные крупные телескопы являются рефлекторами из-за невозможности создать достаточно крупную недеформируемую линзу.

В то же время для любительских наблюдений рефракторы продолжают оставаться вполне конкурентоспособными. Для многих первым телескопом становится недорогой рефрактор с диаметром объектива 5–10 см (или даже крупный бинокль, который также можно отнести к рефракторам).

13.3. Современные оптические телескопы и проекты ближайшего будущего

В настоящее время крупнейшие наземные телескопы, работающие в оптическом диапазоне, – рефлекторы с диаметрами объективов 8–10 м. Рефлекторами также являются космический телескоп Hubble Space Telescope с диаметром зеркала 2,4 м, а также будущий космический телескоп James Webb Space Telescope (JWST, Космический телескоп «Джеймс Уэбб») с составным зеркалом диаметром 6,5 м.

Крупнейшие наземные телескопы наших дней имеют диаметр главного зеркала 8–10 м.

Звание самого крупного телескопа достаточно условно, поскольку размеры самых больших объективов достаточно близки, и поэтому научная результативность зависит от других параметров (тип телескопа, количество и качество регистрирующего оборудования, эффективность использования). Формально на момент написания книги (август 2017 г.) самым большим телескопом является Gran Telescopio Canarias (Большой Канарский телескоп) с диаметром зеркала 10,4 м, однако существует еще более десятка инструментов с диаметром свыше 8 м. Среди них такие продуктивные, как два десятиметровых телескопа обсерватории Кека (W. M. Keck Observatory, Мауна-Кеа, Гавайи), четыре входящих в комплекс VLT (Very Large Telescope) 8,2-метровых телескопа Европейской южной обсерватории (European South Observatory) в Чили, а также 8,2-метровый телескоп Subaru («Субару», Мауна-Кеа, Гавайи), превосходящие канарский по ряду параметров.

Самые крупные зеркала состоят из сегментов.

Самые крупные монолитные зеркала установлены на 8,4-метровом Large Binocular Telescop (Большом Бинокулярном телескопе, Международная обсерватория Маунт-Грэм, Аризона). Subaru и VLT также оснащены монолитными зеркалами, а вот все более крупные инструменты имеют сегментированные зеркала (состоящие из нескольких сегментов).

Сегментированные зеркала состоят из набора отдельных отражающих элементов (обычно шестиугольных), такая конструкция позволяет решить целый ряд проблем. Монолитное зеркало является очень дорогим в изготовлении (даже транспортировка крупного монолитного зеркала представляет собой сложную техническую задачу, поскольку это легко повреждаемый негабаритный груз, который обычно необходимо доставить высоко в горы). Кроме того, независимое управление отдельными сегментами позволяет корректировать форму зеркала при поворотах телескопа и изменении внешних условий (активная оптика).

Важнейшим свойством современных крупных наземных телескопов является использование активной и адаптивной оптики. Активная оптика, разработанная в 1980-х гг., позволяет исправлять изменения формы зеркала, связанные с деформацией при поворотах телескопа, изменениях температуры и ветра. Поскольку современные крупные зеркала являются или сегментированными, или достаточно тонкими, их формой можно управлять, или манипулируя отдельными сегментами, или оказывая воздействие сзади на основное зеркало. Таким способом удается исправлять «медленные» (с характерными временами больше секунды) деформации.

Система адаптивной оптики является более сложной, и ее начали использовать лишь в самом конце XX в. Прогресс адаптивной оптики во многом был связан с ростом вычислительных мощностей современных компьютеров. Эта система предназначена для компенсации искажений волнового фронта, возникающих в первую очередь из-за влияния атмосферы.

Турбулентность в земной атмосфере приводит к тому, что на зеркало телескопа от далекого точечного источника (например, звезды) приходит не плоский волновой фронт, а искаженный. Характерный масштаб неоднородностей в атмосфере составляет 10–30 см, из-за чего изображение точечного источника начинает состоять из отдельных ярких элементов – спеклов, которые за время экспозиции сливаются в сплошной диск размером около или чуть менее одной угловой секунды. При этом дифракционный предел на угловое разрешение телескопа может составлять сотые доли секунды, и для приближения к этому пределу в оптический тракт телескопа (обычно в фокус) вводится дополнительное специальное деформируемое зеркало (или несколько). Система управления сравнивает изображение эталонного источника (это либо яркая звезда, либо чаще «искусственная звезда» – возбужденное лазером свечение верхних слоев атмосферы) с идеальной картиной, на основании чего вырабатывается управляющий сигнал, подаваемый на деформируемое зеркало. Форма зеркала меняется так, чтобы максимально восстановить волновой фронт (т. е. компенсировать искажения, внесенные атмосферной турбулентностью) в отраженном потоке. Коррекцию можно проводить сотни раз в секунду, что позволяет практически полностью убрать влияние атмосферной турбулентности.

Современные телескопы оборудованы системой адаптивной оптики, позволяющей улучшить угловое разрешение за счет компенсации атмосферных искажений.

В пятерке крупнейших телескопов есть два инструмента нестандартной конструкции. Это 10-метровый Hobby-Eberly Telescope (Хобби – Эберли, Обсерватория Макдональда, Техас) и 9,2-метровый Southern African Large Telescope (Большой Южноафриканский телескоп, ЮАР). Главные зеркала этих телескопов не могут наводиться в любую точку неба, они вращаются лишь по азимуту, зато простота монтировки (опорно-поворотного устройства телескопа) делает эти конструкции намного дешевле. Тем не менее движение узлов крепления вторичных зеркал позволяет наблюдать около 70 % доступной части неба. Правда, длительность экспозиции (непрерывной съемки) ограничена, а поле зрения невелико, и одновременно использовать полностью всю площадь светособирающей поверхности невозможно. Зеркала этих телескопов сегментированные и имеют сферическую форму, что также резко уменьшает их стоимость. По многим характеристикам такие инструменты уступают телескопам вроде Subaru или VLT, однако низкая стоимость ($10–20 млн против $200–300 млн) делает такие системы привлекательными. Они применяются в основном для спектральных исследований отдельных астрономических источников.