Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной — страница 60 из 72

Использование роботизированных мобильных исследовательских лабораторий позволяет получать важную научную информацию без необходимости пилотируемых экспедиций.

Еще более сложной задачей является посадка на малые тела – кометы и астероиды. В 2014 г. спускаемому аппарату Philae («Филы»), запущенному на борту космического аппарата Rosetta, удалось совершить посадку на поверхность кометы 67P/Чурюмова – Герасименко и передать оттуда данные. Потенциально такие исследования важны для понимания процессов формирования и эволюции Солнечной системы.

Биохимические лаборатории работали на поверхности Марса.

Основной задачей межпланетных станций является получение новой научной информации о свойствах изучаемых объектов, что может быть достигнуто отправкой сложного лабораторного оборудования. Например, на аппаратах Viking 1 и Viking 2 («Викинг-1, 2»), совершивших посадку на поверхность Марса в 1976 г., была установлена аппаратура для биологических экспериментов и обнаружения живых микроорганизмов на Марсе (результаты оказались отрицательными).

Другой способ существенно расширить информацию о телах Солнечной системы – отправка мобильных установок, способных перемещаться по достаточно большой территории и проводить анализы в разных местах поверхности. Первыми такими аппаратами были «Луноходы» (1970 и 1973 гг.). Среди современных подобных устройств одним из самых успешных является марсоход Opportunity («Благоприятная возможность»). Изначально его программа, начатая в 2004 г., была рассчитана на 90 марсианских дней, однако аппарат продолжает свою работу и в 2017 г. С помощью Opportunity были обнаружены следы существования больших объемов жидкой воды на поверхности Марса в прошлом.

Разумеется, невозможно отправить на космическом аппарате столь же совершенную научную аппаратуру, как установленную в земных лабораториях. Поэтому для решения многих задач идеальным является возврат образцов на Землю. Впервые это удалось сделать в результате пилотируемых полетов на Луну в рамках программы Apollo («Аполлон»). Однако в 1970 г. лунный грунт попал на Землю благодаря работе автоматической станции «Луна-16», а позднее эту операцию повторили «Луна-20» (1972 г.) и «Луна-24» (1976 г.). Получение образцов из разных точек Луны с разными геологическими свойствами позволяет точнее восстановить историю формирования нашего естественного спутника, а также разобраться в его эволюции. В образцах, доставленных на Землю «Луной-24», было обнаружено присутствие воды.

Проводились посадки аппаратов на кометы и астероиды.

Уникальным сочетанием посадки на малое тело (астероид) и возврата образцов стала работа японской миссии Haeabusa, запущенной в 2003 г. Несмотря на многочисленные технические сложности, проведя в 2005 г. исследования астероида 25 143 Итокава, аппарат совершил посадку на его поверхность. Были собраны образцы грунта, которые в 2010 г., хотя и не без проблем, но были доставлены на Землю, где их удалось изучить в лабораториях.

Ответ на вопрос о существования жизни в Солнечной системе (вне Земли) должны дать автоматические межпланетные станции.

Благодаря работе ряда автоматических межпланетных станций удается проводить непосредственное изучение многих тел Солнечной системы на уровне, отчасти сравнимом с данными геофизических исследований (достаточно долговременный мониторинг и зондирование, анализы образцов «на месте» и их доставка в земные лаборатории). Это позволяет, во-первых, лучше понять условия во внешних слоях и недрах планет и других космических тел, благодаря чему можно говорить о возникновении сравнительной планетологии. Многие аспекты формирования деталей рельефа, эволюции климата и др. основаны на сходных физических процессах: скажем, парниковый эффект в атмосферах Земли и Венеры, формирование деталей рельефа на Марсе и Титане. Во-вторых, исследования проливают свет на формирование и эволюцию Солнечной системы в целом. В-третьих, детальное изучение разнообразных планет вблизи нас позволяет с большой уверенностью подходить к вопросам изучения еще более разнообразного «зоопарка» экзопланет, о которых у нас есть лишь весьма ограниченные данные. Поэтому многие выводы о свойствах планет вокруг других звезд основаны на нашем понимании устройства планет Солнечной системы.

Разумеется, остается ряд важных нерешенных проблем. Например, такой важный вопрос, как возможность существования простейших форм жизни на телах Солнечной системы в настоящее время (Европа, Энцелад) или в прошлом (Марс). Ответ на него можно будет получить с помощью будущих межпланетных аппаратов, которые сейчас разрабатывают ведущие космические агентства. В дальнейшем это может позволить разобраться в вопросах происхождения жизни и ее распространенности во Вселенной.

14.3. Изучение Земли из космоса и исследования околоземного пространства

С самого начала космической эры началось изучение Земли с помощью космических аппаратов. Период с июля 1957-го по декабрь 1958 г. был объявлен Международным геофизическим годом, в это время проводился ряд скоординированных программ по изучению нашей планеты: в частности, с использованием ракет и спутников. В октябре 1957 г. был запущен первый искусственный спутник, а уже в 1958 г. с помощью спутников Explorer 1 и Explorer 3 было достоверно подтверждено существование радиационных поясов в магнитосфере Земли (так называемого пояса Ван Аллена). В мае 1958 г. в СССР был запущен тяжелый «Спутник-3» с большим количеством научной аппаратуры на борту, с помощью которой изучалась атмосфера Земли, ее магнитное поле, а также космические лучи.

Изучение Земли из космоса объединяет в себе фундаментальную науку и чисто прикладные задачи.

С течением времени появились специализированные спутники для изучения Земли из космоса. Эта тематика считается крайне важной, поэтому на нее затрачиваются значительные ресурсы. Так, в NASA в 2015–2016 гг. исследования Земли из космоса имели более высокий бюджет (почти $2 млрд в год), чем каждый из трех других научных разделов (астрофизика, планетные исследования, гелиофизика). Очень интенсивно эта область исследований развивается в Европе, которая сейчас лидирует в этом направлении. И даже небольшие страны, не имеющие крупных космических программ, стремятся создавать собственные спутники, предназначенные для решения каких-то локальных прикладных задач, связанных с наблюдениями из космоса, или сотрудничать с большими агентствами.

Исследования Земли из космоса объединяют как ряд фундаментальных научных, так и множество прикладных проблем. Сейчас выделяют такие приоритетные направления, как изучение загрязнения окружающей среды, различные аспекты здравоохранения (например, исследования, связанные с распространением малярии в заболоченных местностях, или роль разрушения озонового слоя в росте заболеваемости раком кожи), исследования экосистем и биоразнообразия, изучение земной коры (сюда входит и прогнозирование землетрясений, и поиск полезных ископаемых, и изучение вулканов), наблюдение за изменениями климата, мониторинг и прогнозирование погоды, изучение водных ресурсов (включая изучение ледяного покрова).

Проблема глобального изменения климата требует постоянного космического мониторинга.

Среди конкретных актуальных вопросов выделяются прогноз ближайших серьезных климатических изменений (например, связанных с таянием льдов), поведение океанических экосистем (исчерпание рыбных ресурсов), динамика количества разрушительных тропических циклонов, распространение болезней.

Кроме пассивных наблюдений используется активное зондирование поверхности и атмосферы с помощью радаров и лазеров.

Для изучения параметров оболочек Земли и их динамики используется обширное разнообразие инструментов. Кроме получения изображений в разных спектральных диапазонах используются и активные методы зондирования, в основном с помощью радаров и лидаров (лазерных радаров, принимающих отраженное или рассеянное лазерное излучение). Это позволяет изучать состав земной атмосферы на разных высотах, а также решать множество других задач, например строить точные карты высот рельефа, что, в частности, дает возможность предсказывать крупные оползни. Также дистанционные измерения позволяют с высокой точностью измерять уровень водных пространств – как морей и океанов, так и озер, что имеет огромное прикладное значение из-за угрозы затопления прибрежных районов при повышении уровня Мирового океана, угрозы наводнений или засухи.

Важной задачей, имеющей отношение к климату и погоде, является измерение солнечной постоянной – количества энергии, приходящей от Солнца. Для этого также необходимы спутниковые измерения. Хотя формально это относится к физике Солнца, тем не менее из-за важности этого параметра для моделирования земного климата подобные измерения традиционно включаются и в программы геофизических исследований.

Только глобальные спутниковые наблюдения позволяют с высокой точностью изучать гравитационное поле Земли и его вариации: эта задача решалась в рамках проектов GRACE (Gravity Recovery And Climate Experiment, Эксперимент по изучению гравитационного поля и климата, запущен в 2002 г.) и GOCE (Gravity field and steady-state Ocean Circulation Explorer, Аппарат для изучения гравитационного поля и постоянных океанических течений, 2009 г.). Измерения гравитационного поля важны для изучения целого ряда вопросов, таких как построение карт океанских течений, исследование таяния ледников, а также изучение последствий землетрясений.

Прогноз погоды базируется на спутниковых данных.

Особенностью геофизических исследований является необходимость длительного мониторинга, поскольку многие корреляции (например, изменение числа ураганов в зависимости от средней температуры) значимо проявляются только на больших масштабах времени. Поэтому требуются постоянные наблюдения, для чего необходимо поддерживать орбитальные группировки спутников, оснащенных соответствующими приборами. Сейчас на орбите постоянно работает несколько десятков спутников для изучения Земли, созданных разными странами. Лидерами в этой области являются Европейское космическое агентство и NASA.