Здесь, в повседневной реальности, в мире людей, домов и машин, мы полностью каталогизировали все частицы, силы и взаимодействия, которые способны оказывать заметный эффект на что бы то ни было. Это колоссальное интеллектуальное достижение, которым человеческий род может по праву гордиться.
Глава 24Эффективная теория повседневного мира
Кажется, что все эти рассуждения о частицах и квантовых полях безнадёжно оторваны от «человеческой» части общей картины — вопросов, касающихся нашей личной и общественной жизни. Однако мы состоим из частиц и полей, подчиняющихся незыблемым законам физики. Всё, что мы могли бы предположить о человеке, должно согласовываться с природой и поведением тех частиц, из которых мы состоим, даже если они не дают нам полной картины всего. Понять, что собой представляют эти поля и частицы, как они взаимодействуют, — важнейший шаг к пониманию того, что означает быть человеком.
Из-за ограничений, накладываемых квантовой механикой и теорией относительности, квантовая теория поля оказывается исключительно строгой и неумолимой системой. Ориентируясь на эту строгость, можно прикинуть, насколько хорошо мы протестировали Базовую теорию, конкретную совокупность полей и сил, воздействующих на окружающий мир. Ответ: очень хорошо. Достаточно, чтобы не сомневаться: нам известны все частицы и взаимодействия, релевантные на этом уровне реальности, и в дальнейшем могут быть открыты лишь такие феномены, которые проявляются где-то за его пределами: на более высоких энергиях, коротких дистанциях, в более экстремальных условиях.
Но откуда мы знаем, что даже если мы не в состоянии непосредственно наблюдать новые частицы или поля, то они не могут оказывать некое малозаметное, но важное воздействие на известные нам частицы? Ответ на этот вопрос подводит нас к ещё одному аспекту квантовых полей: так называемой эффективной теории поля. В квантовой теории поля модификатор «эффективный» не означает «результативно работающий и согласующийся с данными». На самом деле эффективная теория — это эмерджентная аппроксимация более глубокой теории. Это специфичная, надёжная и контролируемая аппроксимация — всё благодаря силе квантовой теории поля.
Если у нас есть некоторая физическая система, то одни её аспекты будут нас интересовать, а другие — нет. Эффективная теория моделирует лишь те аспекты системы, которые для нас важны. Не интересующие нас вещи или слишком малозаметны, чтобы привлечь наше внимание, или испытывают такие колебательные изменения, которые в среднем компенсируют друг друга. Эффективная теория описывает макроскопические признаки, возникающие на базе более полного микроскопического описания.
Эффективные теории исключительно полезны в самых разных ситуациях. Когда мы описывали воздух как газ, а не как совокупность молекул, мы фактически использовали эффективную теорию, поскольку движения отдельных молекул нас не волновали. Другой пример: Земля вращается вокруг Солнца. Планета Земля состоит примерно из 1050 отдельных атомов. Практически невозможно описать, как нечто столь сложное движется через пространство, — возможно ли вообще думать о том, чтобы отследить траектории всех этих атомов? Но нам этого и не требуется: можно отслеживать всего одно интересующее нас значение, а именно: положение центра массы Земли. Рассуждая о движении крупных макроскопических объектов, мы почти всегда пользуемся эффективной теорией движения их центров масс.
* * *
Идея эффективной теории применяется повсеместно, но проявляется во всей красе именно при работе с квантовыми полями. Всё дело в догадке нобелевского лауреата Кеннета Уилсона, глубоко задумавшегося о природе «полей» в квантовой теории поля.
Уилсон обратил внимание на факт, не являющийся секретом для физиков: если у нас есть вибрирующее поле, то такие колебания всегда можно разбить на составляющие, которые соответствуют конкретным длинам волн. Именно это мы и делаем, пропуская луч света через призму и разлагая его на радужный спектр: красный цвет — это длинноволновая вибрация электромагнитного поля, синий — коротковолновая, и так со всеми остальными цветами. В квантовой механике частота коротковолновых вибраций выше и, соответственно, они обладают большей энергией, чем длинноволновые. Нас интересуют низкоэнергетические, длинноволновые вибрации; как раз их легко получить и наблюдать в повседневной жизни (если, конечно, в быту вам не приходится иметь дело с ускорителями частиц или высокоэнергетическими космическими лучами).
Итак, Уилсон полагает, что квантовая теория поля по природе своей обладает отличным механизмом для создания эффективных теорий: можно отслеживать лишь длинноволновые/низкоэнергетические вибрации поля. Коротковолновые вибрации никуда не деваются, но на уровне эффективной теории они всего лишь влияют на свойства длинноволновых вибраций. Эффективные теории поля позволяют судить о низкоэнергетических явлениях, а по меркам физики частиц все явления, наблюдаемые в повседневной жизни, — низкоэнергетические.
Например, нам известно, что протоны и нейтроны состоят из u-кварков и d-кварков, которые удерживаются вместе благодаря глюонам. Кварки и глюоны, проносящиеся на огромных скоростях внутри протонов и нейтронов, — это коротковолновые вибрации поля. Нам не требуется ничего о них знать, чтобы рассуждать о протонах и нейтронах и об их взаимодействии друг с другом. Есть эффективная теория протонов и нейтронов, которая превосходно работает, пока мы не пытаемся различить отдельные кварки и глюоны.
Этот простой пример демонстрирует важные аспекты работы эффективных теорий. Во-первых, обратите внимание на то, что те сущности, о которых мы говорим, — онтология теории — могут совершенно по-разному описываться в эффективной теории и в более полной микроскопической теории. Микроскопическая теория рассматривает кварки, эффективная теория — протоны и нейтроны. Это пример эмерджентности; терминология, которой мы пользуемся при описании флюида, совершенно отличается от терминологии описания молекул, хотя и флюид, и молекулы существуют в одной и той же физической системе.
Изумительную простоту и мощность эффективных теорий можно продемонстрировать всего на двух примерах. Во-первых, в основе любой эффективной теории может лежать много разных микроскопических теорий. Это множественная реализуемость в контексте квантовой физики. Следовательно, нам не требуется знать всех деталей микротеорий, чтобы уверенно судить о макроскопических явлениях. Во-вторых, любая эффективная теория обычно обладает крайне ограниченным набором динамических свойств. Квантовые поля при низких энергиях просто не допускают большего разнообразия. Расскажите мне, какие частицы охватывает ваша теория, и мне останется всего лишь измерить некоторые их параметры, например массы и силы взаимодействий, после чего теория будет полностью описана. Точно так же, как с планетами, вращающимися вокруг Солнца: ничего страшного, что Юпитер — горячий газовый гигант, а Марс — холодная скалистая планета; обе планеты движутся по орбитам так, что движение центров их масс подчиняется законам Ньютона.
Вот почему мы так уверены, что Базовая теория принципиально верна в своей области применения. Даже если бы на микроуровне происходило нечто принципиально иное — там вообще не было бы не только теории поля, но и ни пространства, ни времени в нашем понимании, — то эмерджентная эффективная теория при этом так и оставалась бы обычной теорией поля. Фундаментальная основа реальности может коренным образом отличаться от чего бы то ни было, что может вообразить себе любой из живших на свете физиков; но при этом в нашем повседневном мире физика всё равно будет подчиняться законам квантовой теории поля.
* * *
Всё это звучит устрашающе, если только вы не физик, работающий над формулировкой Теории Всего, но обратная сторона проблемы такова: мы уже практически обзавелись очень хорошей Теорией Некоторых Низкоэнергетических Явлений, в частности понимаем все те явления, с которыми сталкиваемся в повседневной жизни.
Мы знаем, что Базовая теория — не истина в последней инстанции. Она не учитывает тёмную материю, из которой состоит бо́льшая часть вещества во Вселенной, не описывает чёрные дыры и не позволяет понять, что произошло в момент Большого взрыва.
Следовательно, можно себе представить, что эта теория может быть улучшена, если дополнить её некой «новой физикой», которая адекватно бы описывала астрофизические и космологические феномены. В таком случае мы сможем представить области применения различных теорий в виде диаграмм Венна, рассматривавшихся в главе 12. Астрофизикам недостаточно Базовой теории, но весь наш повседневный опыт уверенно вписывается в область её применения.
Эту идею можно сформулировать и иначе, задумавшись, какие явления зависят от каких иных явлений — что над чем главенствует, как сказали бы философы. Это показано на следующем рисунке. Астрофизические феномены зависят не только от Базовой теории, но и от новой физики. И всё это, разумеется, зависит от одной и той же основополагающей реальности. Однако самое важное — тот факт, что эмерджентные феномены, которые мы наблюдаем в повседневной жизни, не зависят ни от тёмной материи, ни от иной новой физики. Более того, они зависят от основополагающей реальности лишь постольку, поскольку зависят от частиц и взаимодействий Базовой теории. Такова сила квантовой теории поля. Вполне возможно, что разнообразные квантово-гравитационные парадоксы не сохраняются на глубинных уровнях основополагающей реальности, но это никоим образом не влияет на физику стульев, машин и центральной нервной системы; вся эта физика является подмножеством эффективной теории поля, относящейся к Базовой теории.
Именно сила эффективной теории поля позволяет нам утверждать: «на сей раз всё иначе», когда мы выступаем с дерзким заявлением о том, что все законы физики, лежащие в основе повседневной жизни, уже полностью известны. Когда Ньютон и Лаплас размышляли о великолепии классической механики, они, вполне возможно, допускали, что когда-нибудь её заменят более полные теории.