Вселенная. Происхождение жизни, смысл нашего существования и огромный космос — страница 50 из 91

Спонтанная сегрегация в модели Шеллинга. Исходные условия показаны слева, конечные — справа


Конечно, нас бы не удивила существенная сегрегация, если бы символы проявляли полную нетерпимость друг к другу — если бы их напрягало, к примеру, соседство даже с двумя символами противоположного типа. Шеллинг показал, что даже небольшая степень предпочтения может породить масштабную сегрегацию. На рисунке показан пример с 500 символами, одна половина из которых крестики, а другая — нолики, причём они случайным образом распределены на сетке с небольшим числом пустых клеток. Допустим, символ чувствует себя неуютно, если 70% или более его соседей относятся к противоположному типу. Но это относительно терпимо. Нолик чувствует себя хорошо, если среди его восьми соседей ноликов не меньше, чем крестиков, и начинает расстраиваться, лишь если крестиков среди них оказывается шесть или более. В исходной конфигурации лишь 17% символов «несчастливы».

Тем не менее этого достаточно. Как только мы позволяем ущемлённым символам сняться с места и перейти на свободные места в сетке и допускаем, чтобы этот процесс продолжался, пока все не будут удовлетворены, мы получаем в итоге вариант распределения, показанный справа: большие группы однотипных соседей, разделённые чёткими границами.

Такой глобальный порядок сложился исключительно в результате локальных индивидуальных решений, а не в результате работы некоего главного стратега. При этом «решения» не связаны с какими-либо высокоорганизованными формами сознания; это самоорганизация, не навязанная извне и не направленная на достижение цели. Можно представить себе, что отдельные молекулы действуют именно так — на самом деле, подобные примеры известны. Нефть отделяется от воды; также отмечено, что молекулы липидов проявляют чёткую избирательность, которая объясняет возникновение клеточных мембран. В 2005 году Шеллинг получил Нобелевскую премию по экономике совместно с Робертом Ауманном в первую очередь за работы, связанные с теорией игр и развитием конфликтов.

Важная деталь теории Шеллинга заключается в том, что подобная модель эволюции системы необратима. Динамика здесь не лапласовская: информация не сохраняется. Следовательно, эта модель не описывает реальный мир на его самом фундаментальном уровне. Однако она может быть довольно хорошим эмерджентным описанием огрубленной динамики, поскольку система в целом далека от равновесия. Когда крестик или нолик начинает чувствовать дискомфорт и перемещается в случайным образом выбранную пустую клетку, такой процесс неизбежно увеличивает энтропию во Вселенной. Информация теряется, поскольку множество начальных конфигураций могут приводить к одной и той же конечной. Энтропия возрастает, но при этом образуется недолговечная структура, обладающая высокой упорядоченностью и сложностью.

* * *

Учитывая, сколь легко простые динамические системы проявляют склонность к самоорганизации, немного проще поверить, что нечто, подобное клеточной мембране, может спонтанно сформироваться при подходящих условиях. Однако реальные биологические мембраны состоят не из мальчиков и девочек, которые хотят поудобнее рассесться в классе, а из липидов.

Липид — это особая органическая молекула, амбивалентно реагирующая на воду. С точки зрения химика, «органический» означает «основанный на атомах углерода, но зачастую содержащий атомы водорода и некоторых других элементов», независимо от того, имеет ли данное вещество хоть какое-нибудь отношение к живым существам. В ближайшем супермаркете слово «органический» будет пониматься совсем иначе. Связь с биологией возникает, поскольку биохимия так сильно зависит от углерода, который легко образует молекулярные цепочки любой сложности.

У липидов есть гидрофильная головка (тяготеет к воде) с одной стороны и гидрофобный хвост (отталкивающий воду) с другой стороны. Именно такая, двойственная, природа липидов, притягивающих воду с одной стороны и отторгающих с другой, позволяет этим веществам складываться в мембраны.

Допустим, мы смешали некоторое количество таких липидов с водой. Гидрофильный кончик чувствует себя отлично, а гидрофобный не знает куда деваться — вода повсюду. В данном случае речь не идёт буквально об «удовлетворении» — просто, как и в случае с крестиками и ноликами, недовольная молекула будет менять конфигурацию, пока не будет выполнено то или иное условие. Один кончик липида тяготеет к воде, а другой стремится полностью от неё отмежеваться.


Липидное стремление к удовлетворению позволяет метафорически описать следующий факт: система развивается так, чтобы минимизировать свободную энергию. Энтропия возрастает, а это означает, что нам следует пользоваться определённой эмерджентной терминологией, причём молекулы «хотят» оказаться в состоянии с низким уровнем свободной энергии. Стрела времени наводит нас на рассуждения в терминах «цели» и «желания», пусть мы и говорим всего лишь о молекулах, подчиняющихся законам физики.

Единственное, что остаётся делать гидрофобному хвосту, — искать комфорта в компании себе подобных. Липиды могут выстраиваться вплотную друг к другу так, что их хвосты оказываются окружены не водой, а такими же гидрофобными хвостами. Это может произойти несколькими путями. Липидам проще всего сомкнуться в маленький шарик, так называемую мицеллу, вся поверхность которой состоит из гидрофильных головок, контактирующих с водой, а гидрофобные цепочки сплетены друг с другом в глубине.

Мицелла


Есть ещё один вариант: бислой. Это структура из двух липидных поверхностей, в каждой из которых гидрофильные головки ориентированы в одном направлении, а гидрофобные хвосты, отходящие от двух поверхностей, сплетены друг с другом. Таким образом, головки дотягиваются до нужной им воды, а хвосты оказываются полностью от неё защищены.

Бислой


В водном (водосодержащем) растворе липиды будут спонтанно образовывать структуру одного из этих типов. Какую — зависит от того, с каким именно липидом мы имеем дело, а также от других свойств раствора, в особенности от того, является ли он кислотным (тяготеет к отдаче протонов и захвату электронов) или щелочным (наоборот).

К числу липидов относятся сравнительно простые жирные кислоты и чуть более сложные фосфолипиды. Жирные кислоты встречаются в биохимии повсюду. Это один из источников топлива, которое митохондрии могут использовать, например, для синтеза АТФ. Фосфолипид состоит из двух жирных кислот, объединённых фосфатной группой (соединением фосфора, углерода, кислорода, азота и водорода).

Клеточные мембраны у всех организмов, обитающих сегодня на Земле, состоят из фосфолипидных бислоёв. Эти молекулы очень легко самоорганизуются в бислои, но не в мицеллы, поскольку их двойные хвосты слишком толстые и с трудом укладываются в шарообразную конфигурацию мицеллы. Затем бислойные мембраны заворачиваются друг в друга, образуя сферические пузырьки, так называемые везикулы. Это простейший этап на пути к возникновению клетки.

* * *

В рамках вопроса о возникновении жизни с фосфолипидами связана одна проблема: они слишком хорошо справляются со своими задачами. Они практически непроницаемы — лишь вода и некоторые другие мелкие молекулы могут попасть с одной стороны мембраны на другую. Следовательно, представляется, что древнейшие клеточные мембраны, вероятно, состояли из жирных кислот, а не из фосфолипидов. Как только они образовались, эволюция стала их совершенствовать.

Жирные кислоты могут самопроизвольно образовывать бислои, но только при подходящих условиях. В очень щелочных растворах жирные кислоты легче образуют мицеллы; в сильно кислотных слипаются в большие маслянистые капли. Бислои лучше всего образуются в умеренно щелочных растворах. Это переходная фаза, зависящая от кислотности окружающей среды.

Такие бислои жирных кислот не расплетаются на длинные плоские поверхности, напоминающие листы бумаги. Наоборот, они быстро смыкаются и образуют маленькие сферы. В такой среде именно эта конфигурация обладает минимальной свободной энергией. Это ещё один пример того, как второй закон термодинамики позволяет создавать организованные структуры, нужные для жизни, а не размазывать всё в однородную слизь.

Жирные кислоты — относительно простые молекулы, поэтому мы, вероятно, без труда нашли бы их в подходящей среде на добиогенной Земле. Более того, образующиеся из них мембраны более проницаемы, чем те, что состоят из фосфолипидов. Для древней жизни это было хорошо. В зрелом организме нежелательно, чтобы вещества волей-неволей вытекали из клетки; в мембраны встроены очень специализированные структуры (например, АТФ-синтаза), обеспечивающие правильное поглощение и выведение питательных веществ и энергии. Но в самом начале, когда такие узкоспециальные механизмы ещё не успели развиться, требовался материал, который хорошо обеспечивал бы компартментализацию химических предшественников жизни, но не изолировал бы их от окружающей среды — иначе они буквально задохнулись бы. По-видимому, жирные кислоты отлично для этого подходят.

* * *

С точки зрения поэтического натуралиста, одно из наиболее интересных свойств спонтанной компартментализации заключается в том, что она хорошо подходит для эмерджентного описания системы. Без компартментов и мембран возник бы настоящий хаос из соединений, источников энергии и реакций. Как только между различными материалами образуется граница, можно говорить об «объекте» (в пределах границ) и среде (за пределами). Граница — имеем ли мы в виду конкретно клеточную мембрану либо кожу или экзоскелет многоклеточного организма — помогает структуре пользоваться окружающей свободной энергией, а нам позволяет обсуждать её удобным, вычислительно эффективным способом.

Британский нейрофизиолог Карл Фристон предположил, что функцию биологических мембран можно понимать в контексте марковского покрытия. Этот термин впервые предложил статистик Джуда Перл, работающий в сфере машинного обучения. Допустим, у нас есть сеть: набор «узлов», соединённых линиями. «Байесовская сеть» — это граф, образующийся из этих узлов, которые могут посылать, получать и обрабатывать информацию. Таковы, например, компьютеры в Интернете или нейроны в мозге. Если взять конкретный узел, его марковское покрытие будет состоять из всех узлов, которые непосредственно на него влияют («родители»), плюс всех узлов, на которые влияет он («потомки»), пл