Вселенная в электроне — страница 17 из 39

Это связано с замечательным открытием, которое сделал ленинградский ученый Александр Александрович Фридман. Чтобы понять, в чем тут дело, нам придется познакомиться с некоторыми свойствами сил всемирного тяготения.

Изогнутое пространство и искривленное время

Казань середины прошлого века была грязным провинциальным городом, где редкие островерхие мечети контрастировали с луковицами православных церквей, а светлое, в несколько этажей, здание университета — с низкими, тесно прижавшимися друг к другу домишками вдоль пыльных улиц, по которым носились ватаги чумазых ребятишек. Трудно поверить, что в этих условиях могла родиться теория, перевернувшая представления, безраздельно владевшие умами более двух тысячелетий.

С тех пор как древнегреческий ученый Евклид собрал и привел в систему то, что стало потом называться евклидовой геометрией (она и сегодня излагается в школьных учебниках), считалось само собой разумеющимся, что окружающее нас пространство плоское, без всякой кривизны. Посмотрите на тонкий прут или лист бумаги. Это примеры одномерного и двумерного пространств. Они могут быть прямыми, плоскими и искривленными. Это понятно и не требует никаких пояснений. Сложнее представить искривление трехмерного пространства. Для этого нужно воображение или математические формулы. Например, сумма углов треугольника в искривленном пространстве не равна 180 . Соответствующая теорема из школьного учебника там не пригодна, поскольку при ее выводе неявно предполагалось, что пространство может быть только плоским. На поверхности шара сумма углов треугольника больше 180°, на вогнутых поверхностях она меньше 180°. Читатель сам может найти другие величины, характеризующие кривизну пространства.

С вершины современных знаний многое из того, что входило в науку с большим трудом, выглядит просто очевидным, и кажется невероятным, как это люди, а уж тем более знаменитые ученые, не могли понять таких простых вещей! Но именно такие простые, веками почитаемые за очевидные взгляды труднее всего изменить. Описывающая плоский мир геометрия Евклида более двух тысячелетий успешно служит людям, и никому в голову не приходило, что могут быть еще и другие геометрии, столь же последовательные и непротиворечивые, но только для искривленных миров. С точки зрения церковных догм, сама мысль о многообразии миров выглядела еретической и напоминала о трагической судьбе Джордано Бруно.

Неудивительно, что когда ее высказал профессор математики Казанского университета Николай Иванович Лобачевский, его работы не нашли понимания даже у лучших математиков того времени. Он послал работы в Петербург, в Академию наук, но получил резкий отрицательный отзыв, подписанный знаменитым математиком Остроградским.

Правда, рассказывают, что здесь сыграло роль неудачное стечение обстоятельств. Остроградскому уже давно досаждал безграмотными математическими сочинениями некий чиновник Лобачевский. Получив новую работу, подписанную тем же именем да еще замахнувшуюся на тысячелетний авторитет Евклида, Остроградский пришел в крайнее раздражение и тут же написал разгромный отзыв.

Как бы там ни было, отрицательное отношение Академии наук к работам казанского ученого подорвало его положение. Этим воспользовались чиновники и те из его коллег, которые раньше опасались открыто критиковать его взгляды (Лобачевский долгое время был ректором университета). К тому же резко ухудшилось зрение, и Лобачевский был вынужден уйти в отставку. Вскоре он умер, почти ослепший, неспособный заниматься своей любимой наукой.

Лобачевский в своих книгах первым создал неевклидову геометрию и поставил вопрос: какова же реальная геометрия нашего мира — плоская евклидова или же искривленная неевклидова? Более того, он попытался ответить на этот вопрос экспериментально — путем астрономических наблюдений измерить сумму углов треугольника, образованного тремя яркими звездами. Работы Лобачевского и выполненные независимо от него расчеты венгерского математика Яноша Бояи, который тоже пришел к идее неевклидовых геометрий, послужили идейным фундаментом для всех последующих теорий искривленных пространств, в том числе и для теории Бернгарда Римана. Этот немецкий ученый разработал математический аппарат для анализа пространств различных типов. В его теории пространство могло быть скрученным и изогнутым, по-разному в различных точках, могло иметь разрывы и дырки, быть многомерным. Свои идеи Риман изложил в конкурсной лекции перед тем, как занять в Геттингенском университете место приват-доцента. В лекции, которая называлась «О гипотезах, лежащих в основаниях геометрии», не было ни одной формулы — для математического доклада факт весьма необычный. Рассказывают, что, выслушав Римана, престарелый «король математиков» Гаусс молча встал и вышел из зала. Лекция молодого ученого привела его «в состояние наивысшего изумления».

В начале XX века в распоряжении физиков были хорошо разработанные математические методы для описания искривленных пространств, а мысль о том, что при определенных условиях пространство может стать искривленным, уже не казалась еретической. Однако не было физической теории, которая бы связала кривизну пространства с действующими в нем силами. Такую теорию — теперь ее называют общей теорией относительности — создал Альберт Эйнштейн. В 1916 году он вместе с немецким математиком Гильбертом вывел уравнения, которые выразили кривизну пространства через силы всемирного тяготения. Оказалось, что там, где есть поле тяготения (гравитация), пространство всегда искривлено. И наоборот, пространственная кривизна проявляется в виде сил гравитации. Материальное тело как бы прогибает пространство и катится по образовавшейся ложбинке. Чем сильнее гравитация, тем такая ложбинка глубже.

И вот что замечательно: из уравнений Эйнштейна и Гильберта следует, что искривлено не только пространство, но и… время! Можно сказать, что темп его течения зависит от конкретных физических условий и разный в различных областях пространства. Этого не предвидели ни Лобачевский, ни Бояи. В перепадах гравитационных полей время может замедляться, почти замирать, или резко ускоряться.

Однажды маленький сын спросил Эйнштейна, как он стал таким знаменитым, и тот ответил:

— Когда слепой жук ползет по изогнутому суку, он не замечает, что сук изогнут. Мне посчастливилось заметить то, чего не заметил жук!

Однако анализ новой теории, выполненный Фридманом, показал, что в ней содержится нечто большее: кривизна может стать такой большой, что пространство полностью замкнется и превратится в изолированный «пузырь».

Бесконечный мир размером с точку

Александр Александрович Фридман родился в семье придворных музыкантов и детство провел в Зимнем дворце. В первую мировую войну он был на фронте в артиллерийских и воздухоплавательных частях. Не раз совершал опасные полеты, однажды едва не погиб при неудачном приземлении. Сочувствуя революционным идеям, он прятал в Зимнем дворце прокламации, одним из первых российских ученых признал Октябрьскую революцию. Много работал, преподавал. Увлекаясь наукой, мало внимания уделял личным удобствам.

Летом 1925 года газеты сообщили, что директор Главной геофизической обсерватории профессор А. А. Фридман и аэронавт П. Ф. Федосеенко достигли на стратостате высоты в семь тысяч двести метров. Это был рекорд страны. Через два месяца Александр Александрович умер от брюшного тифа, случайно заразившись во время туристской поездки в Крым. Он умер, так и не узнав о том, что две его небольшие статьи в физическом журнале совершили настоящую революцию в науке о строении и происхождении Вселенной.

В жестокой борьбе с религией наука создала картину бесконечной Вселенной, и вот теперь, основываясь на общей теории относительности, Фридман показал, что эта картина приближенная, и на самом деле мир может быть конечным. Но это не простой шар, где можно «дотронуться» до ограничивающей его стенки. Таких границ у мира нет. Конечный, но без границ.

Чтобы понять, как это может быть, представим себе муравья, бегущего по проволочному кольцу. Его одномерный мир сразу бесконечен и ограничен. Ограничен, так как, двигаясь все время вперед, муравей обязательно попадет в то место, где он уже побывал ранее, а бесконечен потому, что, сколько ни бегай, никакого конца у кольца не обнаружишь. Одномерная Вселенная обладает краями лишь в мире с большим числом измерений — на плоскости или в пространстве.

Для муравья на глобусе мир был бы двумерным, но опять-таки самозамыкающимся и вместе с тем бесконечным. И если бы муравей сам был двумерным и не мог «привстать» над поверхностью глобуса, то никаких границ своего мира он никогда не обнаружил. Двумерный мир полностью бы исчерпывал все доступное ему пространство.

Сказочным двумерным «людям», живущим на поверхности шара, было бы очень трудно представить себе ограниченность их Вселенной. Для этого им пришлось бы иметь дело с воображаемым трехмерным миром, который они могли бы изучать лишь с помощью математических формул, — ведь в своей жизни они имеют дело только с длиной и шириной, высоты у них нет.

Точно так же наше трехмерное пространство может быть поверхностью четырехмерного шара. Оно тоже будет одновременно бесконечным и замкнутым. У него нет границ, но объем его конечен. Этот «недостаток» мы не будем ощущать, поскольку мы тоже не можем «привстать» над трехмерным миром.

Конечно, реально никакого четырехмерного мира не существует, иначе четвертое измерение проявлялось бы в наших экспериментах. Это всего лишь вспомогательный математический образ. Однако это не мешает трехмерному миру обладать свойством кривизны и, подобно двумерной сфере, иметь конечный радиус.

Вообще говоря, двумерные существа могли бы узнать о замкнутости своего мира, если бы решили измерить длины концентрических окружностей, описанных вокруг какой-либо точки. Вначале их очень бы удивило, что длины окружностей не равны 2πR. Чтобы объяснить этот факт, им пришлось бы допустить, что мир искривлен. А далее обнаружилось бы еще более поразительное свойство: длины окружностей сначала растут с увеличением их радиуса, а затем начинают убывать и, наконец, стягиваются в точку! И вот это убедило бы жителей в том, что их мир замкнут. Его размеры: длина светового луча-радиуса от точки испускания до точки, в которой концентрические окружности становятся бесконечно малыми.