— Конечно, в том или ином уголке еще можно заметить или удалить пылинку, но система, как целое, стоит прочно, и теоретическая физика заметно приближается к той степени совершенства, каким уже столетия обладает геометрия. Поэтому едва ли стоит посвящать жизнь и тратить силы на завершение практически уже написанной картины.
Однако прошло всего несколько лет, и Планк вместе с Эйнштейном, де Бройлем и другими физиками открыл ворота в необозримый мир квантовых явлений.
Как мы видели в предыдущих главах, квантовая механика и теория относительности — два кита, на которых покоится фундамент современной физики, содержат уйму нерешенных проблем и неясностей, каждая из которых может стать воротами в новую теорию. Природа неисчерпаема в многообразии своих законов, и надеждам построить окончательную Всеобщую Теорию, которая объясняла бы все явления мира, не суждено сбыться. Такой теории просто не может быть. По мере углубления наших знаний все большее число явлений будет получать точное истолкование. Однако абсолютно точного объяснения дать нельзя. При увеличении точности эксперимента обязательно обнаружатся отклонения, и потребуется новая теория, уточняющая известные законы. Она откроет неизвестные явления и создаст массу новых проблем — трамплин для следующей теории. И так без конца. В этом как раз и проявляется неисчерпаемость природы. С развитием науки число наших вопросов к ней не уменьшается, как это предполагает Фейнман, а, наоборот, их становится все больше — ведь, образно говоря, граница, по которой наше знание соприкасается с океаном неизвестного, становится все длиннее!
Каждый новый шаг на бесконечном пути познания увеличивает могущество человечества, поэтому оно никогда не утратит интереса к получению нового здания. Прекращение фундаментальных исследований равнозначно прекращению поступательного развития общества. Едва ли такое «научно замороженное» общество сможет просуществовать достаточно долго. Рано или поздно оно непременно начнет деградировать.
Вместе с тем неограниченное развитие науки, постоянное расширение ее границ тоже приводит к трудностям, которые в будущем могут существенно затормозить, а потом, возможно, и вообще остановить научно-технический прогресс. Речь идет о быстро возрастающем потоке информации, в котором наука может просто захлебнуться. Это еще один барьер, который предстоит ей преодолеть.
Горе от ума
Первая библиотека была создана Аристотелем в Афинах 2300 лет назад. В январе 1665 года в Париже стала выходить «Газета ученых» — первое в мире периодическое издание, посвященное научным вопросам. В том же году вышел первый номер «Философских протоколов» Английского королевского общества. Сегодня в мире уже свыше трехсот тысяч специальных научных и научно-технических журналов, ежегодно появляется не менее пятидесяти тысяч книг, посвященных науке и ее применению. Поток научной информации удваивается приблизительно каждые десять лет, а в ведущих областях естественных наук даже каждые два-три года. Настоящий информационный потоп!
Учёный теперь уже не в состоянии уследить, что происходит во всех областях его науки. Он едва успевает ознакомиться с информацией, относящейся к той конкретной проблеме, которой он занят в данное время. Размышлять над далеко отстоящими вопросами у него просто нет времени. Чтобы не отстать, ученый вынужден суживать фронт своих исследований. В результате наука дробится, возникает множество отдельных, весьма слабо контактирующих друг с другом разделов, которые иногда рассматриваются даже как новые науки. Сегодня плохо понимают друг друга даже те ученые, которые работают в близких областях. Физик-ядерщик подчас чувствует себя чужестранцем среди коллег, обсуждающих теорию поля, а для радиофизика, попавшего на семинар по элементарным частицам, непонятны не только идеи, но и сам язык, терминология, используемая участниками семинара. Работа ученых все больше напоминает строительство вавилонской башни, которая, по преданию, рухнула из-за того, что у ее создателей не было единого языка и плана.
Быстрое увеличение объема информации, с которой приходится иметь дело специалисту, приводит к удлинению сроков обучения. Чтобы получить высшую научную квалификацию — стать доктором наук, — нужно около двадцати пяти лет. Если человек начал учиться в семь лет, то к двадцати пяти он становится кандидатом наук, а доктором — когда ему уже за тридцать. А в будущем учиться придется еще дольше. Правда, ученый пополняет свои знания всю жизнь. Стоит на несколько месяцев перестать читать статьи в специальных журналах, слушать доклады на семинарах, и вы уже чувствуете, как отстали от своих коллег!
Но еще более важным следствием «информационного потопа» является то, что специалисту становится все труднее привести в систему, осмыслить, а следовательно, и использовать эти знания. В условиях лавинообразного роста информации все большая часть его оказывается попросту утерянной. В книгохранилищах накапливаются издания, которые ни разу не были затребованы читателями. В библиотеке им. В. И. Ленина фонд таких забытых книг насчитывает миллионы наименований. Иногда бывает проще повторить исследование и заново найти решение, чем перерыть горы литературы. Подсчитано, что шестьдесят — восемьдесят процентов инженерных решений в мире предлагается повторно. Только в США убытки от таких повторных решений достигают миллиардов долларов в год.
Создается парадоксальная ситуация, настоящий информационный барьер: чем больше мы узнаем, тем труднее становится приобретать новое и использовать уже имеющееся знание. Вот уж действительно горе от ума!
Положение выглядит настолько серьезным, что, по мнению многих ученых, дальнейшая судьба и сам вид нашей цивилизации в значительной степени определяются тем, какой конкретный путь изберет человечество для преодоления информационного барьера. В решении этой проблемы в конечном счете состоит одна из главных задач современной научно-технической революции. Первая промышленная революция путем широкого внедрения машин в сферу физического труда неизмеримо расширила весьма ограниченные мускульные возможности человека. Новая научно-техническая революция связана с использованием машин в области умственной деятельности для расширения возможностей накопления, хранения и переработки огромных массивов информации.
Для сравнительно небольших интервалов времени, если не заглядывать далеко в будущее, здесь нет принципиальных трудностей. Однако в более далекой перспективе — а при современных темпах развития это, вообще говоря, не такое уж далекое будущее — положение выглядит не столь ясным.
Электронные помощники
Есть оптимисты, которые считают, что острота информационного кризиса будет спадать по мере изобретения все более мощных ЭВМ с огромным резервом электронной памяти, способных почти мгновенно «впитывать» в себя миллиарды слов и чисел, автоматически с огромной скоростью просматривать и сортировать содержимое своей памяти, обмениваться им с другими ЭВМ. Ведь уже сегодня стоимость электронного хранения одного слова значительно ниже стоимости его хранения на бумаге, а применение лазерного луча для чтения и записи позволяет уместить содержание крупной библиотеки на одном-двух дисках размером с обычную долгоиграющую пластинку.
Нет спора, кибернетические системы — важные помощники человека, тем более что уже сегодня ЭВМ способны выполнять за секунду до миллиарда операций типа сложения, умножения, пересылки информации из одной ячейки памяти в другую и так далее. Следующее их поколение сможет выполнять до триллиона операций в секунду. Возможности колоссальные! И все же… Кибернетические устройства не устраняют, а лишь отодвигают наступление «информационного потопа». Для того чтобы они могли оперировать с быстро усложняющейся информацией, распределять ее и обрабатывать в соответствии с вновь возникающими задачами, для них необходимо создавать все более сложные и разветвленные математические программы. А это требует затраты труда высококвалифицированных программистов, хорошо знакомых к тому же с другими разделами науки. Кроме того, чем программа сложнее и чем больше объем просматриваемых ею данных, тем медленнее эта программа работает, — ведь скорость передачи сигналов в системе не может быть бесконечной, она ограничена скоростью света. Удвоение мощности вычислительного центра практически никогда не означает удвоения объема обрабатываемой информации.
Долго и тщательно готовившийся запуск американской ракеты на Венеру сорвался из-за того, что в управляющей программе была допущена, казалось бы, пустяковая ошибка: при кодировании программы действий одна из запятых была случайно заменена на точку. Обычно подобные ошибки приводят к тому, что вычислительная машина не понимает смысла команды, «спотыкается», и к оператору поступает «сигнал бедствия». Однако иногда бывает так, что ошибка лишь несколько изменяет смысл команды. Никакого тревожного сигнала в этом случае не вырабатывается, система проходит все тесты, но при каких-то особых условиях «теряет голову», начинает сбиваться. Так и случилось при запуске американской ракеты. Выявить подобный сбой в работе кибернетической системы очень трудно, а чем сложнее система, тем больше вероятность сбоев… Для надежности приходится вводить специальные программы автоматического контроля, которые часто оказываются сложнее самой контролируемой программы.
Обслуживание программного обеспечения крупной вычислительной машины уже сегодня стоит больше, чем затраты на эксплуатацию всех ее электронных и механических устройств. Если же принять во внимание стоимость разработки программ, то в целом программное обеспечение обходится на порядок дороже стоимости самой машины — «железок», как говорят инженеры, хотя эти «железки», а точнее, кристаллы и микросхемы с сотнями и тысячами деталей, стоят тоже довольно дорого. В будущем «ножницы» между «техническим» и «интеллектуальным» наполнением ЭВМ раздвинутся еще шире. Так что надеждам перескочить через информационный барьер на «кибернетических ходулях», можно думать, не суждено сбыться.