модроме
3.1. Первые космические полеты
Если вы думаете, что Дж. Гленн стремился побить рекорд Гагарина по продолжительности космического полета, то это неверно: Гленн совершил свой полет 20 февраля 1962 г. а за полгода до этого, 6–7 августа 1961 г., советский космонавт Герман Титов выполнил космический полет продолжительностью 1 сутки и 1 час, сделав 17 оборотов вокруг Земли.
Дело тут совсем в другом. Оборот вокруг Земли на низкой орбите длится около 1,5 часа. Земной шар за время полета поворачивается с запада на восток за каждый час на один часовой пояс. При старте с Байконура Гагарин мог сделать один оборот и приземлиться на 1,5 часовых пояса западнее, в Саратовской области. На втором обороте он бы уже попал за пределы территории СССР. По этой же причине следующий полет советского космонавта — Титова — продолжался сутки, чтобы приземлиться недалеко от места старта.
Космический корабль Джона Гленна был расчитан на приводнение, поэтому при старте из Флориды он не мог приземлиться, пока под ним была сухопутная территория США. Ему нужно было дождаться, пока Земля под ним повернется на 4 часовых пояса, проходящих по континентальной части США, и «подставит» ему для приводнения Тихий океан. Поскольку приводнение планировалось примерно на той же широте, что и старт, кораблю предстояло сделать как минимум три полных оборота по орбите, затратив на это 4,5 часа. Еще некоторое время понадобилось для стартового разгона и спуска на парашюте (примерно по 10 мин). Отсюда и время полета — около 5 часов. По этой же причине первый полет двухместного американского корабля «Джемини» тоже продолжался 4 часа 53 минуты.
3.2. С первой космической
Большая полуось (a) и орбитальный период (T) зависят только от удельной полной энергии тела (кинетическая + потенциальная), следовательно, полуоси и периоды орбит обоих объектов будут одинаковыми и равными радиусу Земли. Запущенный вертикально вверх (случай запуска вниз не рассматриваем), объект достигнет высоты около 6400 км и вернется на Землю.
Это легко проверить, пользуясь законом сохранения энергии: удельная кинетическая энергия объекта (v2/2) должна быть равна разности его удельных потенциальных энергий в гравитационном поле у поверхности Земли (M и R — ее масса и радиус) и в точке максимального подъема: GM/R − GM/Rmax. А поскольку скорость старта — это первая космическая скорость v2 = GM/R, то
откуда Rmax = 2R. Значит, объект поднимется над поверхностью Земли на высоту, равную ее радиусу, около 6400 км.
Длительность полета вычислить сложнее. Она равна продолжительности (t) движения по апоцентрической половине эллиптической орбиты при e → 1. Согласно второму закону Кеплера (закон площадей),
Учитывая, что c = ae, получим: bc = abe. Тогда
При e → 1 получим t/T = 0,5 + 1/π = 0,81831…
Для T = 90 мин получим t = 74 мин, а вовсе не 45 мин, как думают некоторые! (См. статью А. Кларка «Введение» в книге «Исследование мирового пространства», М.: Физматгиз, 1959, с. 9.)
3.3. Выстрел ракетой в Луну
Положение Луны относительно космодрома повторится через «лунные сутки» (PЛ), равные периоду обращения Луны относительно поверхности Земли. Период обращения Луны вокруг центра Земли (сидерический месяц) равен Pc = 27,321662 сут, период вращения Земли равен P⊕= 23 час 56 мин 04 сек = 23,934469 час = 0,9972696 сут. Поскольку орбита Луны не круговая, можно говорить лишь о средних лунных сутках, которые равны
Таким образом, на следующие сутки Луна окажется примерно в том же положении на небе относительно небесного меридиана космодрома на 50,5 минут позже. Учитывая неравномерность движения Луны, можно сказать, что через сутки Луна «запаздывает» примерно на 1 час. Действительно, 9 сентября 1959 г. старт к Луне был назначен на 6 час 39 мин 50 сек. Однако он тоже не состоялся. Следующая (успешная!) попытка состоялась 12 сентября в 9 час 39 мин 26 сек.
Глядя на назначенные моменты старта, легко догадаться, в какой части своей орбиты была Луна. В среднем Земля «догоняет» ее 50,5 мин, а в те дни ей каждый раз требовался без малого час. Следовательно, Луна двигалась быстрее среднего, значит, была в районе перигея своей орбиты. Заглянув в астрономический календарь или электронный планетарий, мы увидим, что это действительно так!
3.4. Спутник упал
Трение о разреженные верхние слои атмосферы действительно стало причиной падения первого спутника (как и многих других после него). Однако, приближаясь к Земле, спутник не терял скорость движения, а напротив — увеличивал ее. Это один из «парадоксов» космонавтики (см. Штернфельд, 1991). Какой бы эллиптичной орбита спутника ни была вначале, в результате трения об атмосферу она округляется, поскольку максимальное трение наблюдается в области перигея. А для скорости движения по круговой орбите справедлива формула, определяющая первую космическую скорость:
где G — гравитационная постоянная, M — масса Земли, R — радиус орбиты. Если R уменьшается, то V возрастает. Казалось бы, парадокс: трение приводит к росту скорости! Но ясно, что к росту скорости приводит не трение, а гравитация: работа силы тяжести ускоряет движение спутника и компенсирует потерю энергии на трение. При этом работа силы тяжести делится ровно пополам: половина идет на рост кинетической энергии спутника (т. е. скорости), а вторая половина уходит в тепло из-за трения.
Действительно, гравитационная энергия на единицу массы спутника равна GM/R, а ее изменение при небольшом сокращении радиуса орбиты составляет
При этом удельная кинетическая энергия (V2/2) возрастает на
а вторая половина dU рассеивается через трение в тепло. Это частный случай теоремы вириала.
Скорость спутника возрастает до той поры, пока он не проник в плотные слои атмосферы. Начиная с некоторой высоты, гравитация уже не в состоянии компенсировать потерю энергии на сопротивление воздуха, и спутник начинает замедляться, а если он недостаточно прочный, то и разрушаться. Конкретное значение этой высоты зависит от массы и размера спутника. Обычно оно лежит в интервале 70–90 км.
3.5. Стыковки на орбите
Одновременный запуск двух ракет с одного космодрома невозможен по техническим причинам: при подготовке запуска и в первые минуты полета каждой ракеты задействованы все службы контроля космодрома. А следующая возможность запустить ракету на орбиту так, чтобы она оказалась недалеко от первой, представляется в тот момент, когда запущенная первой завершает свой первый виток вокруг Земли и пролетает сравнительно недалеко от космодрома. На низкой околоземной орбите один облет Земли длится как раз 1,5 часа.
Кроме того, эта задержка во времени дает возможность точно определить параметры орбиты первой ракеты и точнее нацелить к ней вторую ракету. Разумеется, за 1,5 часа из-за вращения Земли космодром переместится от точки первого старта. Поскольку речь идет о космодроме на мысе Канаверал (Флорида, США), расположенном на 28,5° с. ш., то это смещение составит
Но за несколько часов маневрирования на орбите корабль «Джемини» сокращал это расстояние до сотен метров и начинал операцию стыковки.
3.6. Суточный спутник
Очевидно, автор имеет в виду геостационарную орбиту. Это круговая экваториальная орбита с периодом в одни звездные сутки. Двигаясь по ней в восточном направлении на высоте около 35 800 км от поверхности Земли, ИСЗ постоянно висит над одной точкой планеты. В объяснении автора круговая орбита подразумевается, поскольку указана лишь одна высота. Однако, термин «высота» относится к расстоянию от земной поверхности, а оно составляет 5,6 радиуса Земли. Если же автор имел в виду расстояние от центра Земли, то это 6,6 земного радиуса. Видимо, полной определенности у автора не было. К тому же не указано направление движения (на восток) и наклон орбиты (нулевой, т. е. орбита лежит в плоскости экватора).
Под определение, данное автором, попадает значительно более широкий класс орбит, называемых геосинхронными, единственный признак которых — равенство орбитального периода звездным суткам. Двигаясь по таким орбитам в восточном направлении, спутники для наземного наблюдателя не остаются в одной точке неба, а в общем случае выписывают на небе «восьмерки», периодически смещаясь к югу и северу в соответствии с наклоном их орбиты.
3.7. Ориентация в пространстве
Три ортогональных оси координат необходимы для указания положения объекта в пространстве. Если же речь идет об определении направления (а именно это и требовалось для правильной ориентации космического корабля перед включением тормозных двигателей), то достаточно осуществить поворот по двум осям. Именно столько их у телескопа и артиллерийского орудия.
Однако в аэродинамике летательных аппаратов (самолетов), откуда терминология перекочевала в космонавтику, направление летящего самолета описывается тремя углами: крен, тангаж и рыскание. Крен изменяется при покачивании крыльями, тангаж — при покачивании с носа на корму, а рыскание — это повороты вправо-влево. Дело в том, что при полете в атмосфере важна ориентация плоскости крыльев, создающих подъемную силу, относительно направления силы тяжести, которую эта сила должна компенсировать.
У космического корабля нет крыльев, а если и есть (ракетоплан), то в вакууме они не создают подъемной силы. Поэтому крен для корабля на орбите, вообще говоря, безразличен. Но он важен для работы космонавта. Правильный выбор крена позволяет ему увидеть в иллюминатор или перископ поверхность Земли, видимое движение которой указывает направление полета корабля. Именно в этом направлении должна быть сориентирована продольная ось корабля, чтобы работа тормозных двигателей привела к сходу с орбиты и посадке на Землю. Так что в описании полета Джона Гленна неточности не было.
Автоматические межпланетные зонды для ориентации в пространстве осуществляют развороты по двум осям, используя в качестве опорных направления на Солнце и какую-нибудь яркую звезду, например Канопус или Сириус. При этом информацию о направлении своего движения сам зонд получить не может, и ее определяют на Земле путем небесно-механических расчетов.
3.8. От Солнца до Земли
Формально, двигаясь с постоянной начальной скоростью, снаряд преодолел бы это расстояние за 3,5 года. Однако, учитывая, что вторая космическая скорость на поверхности Солнца а скорость снаряда 1,5 км/с, ясно, что снаряд вообще не покинет Солнце.
3.9. Спрыгнуть с астероида
Чтобы улететь далеко-далеко, нужно развить вторую космическую скорость:
где M и R — масса и радиус космического тела. Чтобы облегчить расчеты, преобразуем эту формулу. Для сферического тела
где ρ — средняя плотность тела. Используя значение второй космической скорости для Земли (11,2 км/с), запишем
где R⊕= 6371 км и ρ⊕ = 5,52 г/см3 — радиус и средняя плотность Земли. Примем плотность типичного астероида равной 2 г/см3 и получим простую формулу для второй космической скорости:
V∞ = 1 м/с × R (км).
То есть вторая космическая скорость, выраженная в метрах в секунду, равна радиусу астероида, выраженному в километрах. Если у тела иная средняя плотность, следует умножить значение V∞ на
А теперь вопрос посложнее: какую вертикальную скорость может развить человек в прыжке? Подпрыгивая вверх на Земле, мы в основном тратим запас мышечной энергии на преодоление силы тяжести, а на астероиде — на сообщение телу кинетической энергии. Поэтому запишем уравнение так:
где V — максимальная скорость нашего прыжка на астероиде, m — масса тела человека (она сокращается), g — ускорение свободного падения на Земле, H — максимальное вертикальное перемещение человека в прыжке на Земле. Присев и подпрыгнув, мы перемещаем свое тело примерно на 1 м. Следовательно, Трудно сказать, насколько скафандр затрудняет прыжки: ждем подсказки от тех, кто прыгал в скафандре. А пока примем оценку в 4 м/с как максимальную. Тогда максимальный размер астероида, с которого человек может спрыгнуть в космос и улететь далеко-далеко, составит
У самых плотных астероидов средняя плотность не превышает 4 г/см3, а у рыхлых ядер комет она около 0,5 г/см3, поэтому диапазон значений R составляет от 3 до 8 км. Скорее всего, эти оценки немного завышены. Ведь мы с вами никогда не прыгали в космическом скафандре на астероиде. Может быть, это совсем не легко? Ждем уточнения от тех, кому впервые удастся это сделать.
3.10. Карта Луны
Солнцем освещена половина лунного шара, поэтому на каждом орбитальном витке спутник будет снимать только половину времени. Если съемка ведется в оптическом диапазоне, то за 14 дней (примерно половина орбитального периода Луны, равного 27,3 сут) спутник снимет только половину лунного шара. Если же это тепловая (ИК) или нейтронная съемка, то можно исследовать весь шар.
Быстрее всего под спутником будут перемещаться экваториальные области Луны. Если орбитальный период аппарата P, то линейное смещение экваториальной области за это время составляет 2πRP/27,3 сут, где R = 1737 км — радиус Луны. Орбитальный период спутника составляет где M = 7,35 · 1022 кг — масса Луны. Чтобы не проводить длительных вычислений, воспользуемся знанием того, что период обращения на низкой (около 200 км) околоземной орбите равен 90 мин. Масса Луны — 0,0123 земной массы, радиус Луны — 0,273 земного радиуса, а с учетом высоты орбиты над Луной (100 км) и над Землей (200 км) — 0,280 земного радиуса. Поэтому Тогда ширина полосы составит 2π×1737 км × 2 час / 27,3 сут = 33,3 км. С высоты 100 км эта полоса видна под углом α = 2π arctg (33,3/200) = 18,9°. Таким образом, минимальный угол поля зрения прибора составляет около 19°. Но если это оптический прибор, то съемкой будет покрыта лишь половина Луны.
3.11. Космический мусор
Самопроизвольное размножение космического мусора происходит по принципу цепной реакции: при столкновении любых двух объектов возникают тысячи новых осколков, поэтому вероятность их последующих столкновений с другими объектами возрастает. До тех пор, пока все осколки не раздробятся до миниатюрного размера, их количество должно было бы возрастать экспоненциально. Однако есть и конкурирующий процесс: осколки на самых низких орбитах интенсивно тормозятся в разреженных слоях земной атмосферы, сгорают в ней или падают на поверхность Земли. Этим объясняется первоначальный спад теоретических кривых (быстро падают фрагменты с самых низких орбит), который затем сменяется ростом числа осколков на более высоких орбитах. Самое тревожное, что даже при полном запрете новых запусков этот рост не прекратится и работать на околоземных орбитах будет все опаснее. Если искусственно не очищать их от мусора. Проектами такой очистки сегодня заняты многие космические инженеры.
Пилообразная форма кривых связана с «дыханием» земной атмосферы. Синхронно с изменением солнечной активности, происходящим со средним периодом 11,2 года, верхние слои нашей атмосферы «вспухают» и «опадают». В годы повышенной активности Солнца на высотах до 600 км плотность воздуха заметно возрастает, увеличивая сопротивление движению спутников и фрагментов мусора, поэтому они чаще падают на Землю; убыль осколков превышает их размножение. В годы низкой активности Солнца торможение в атмосфере ослабевает и на первый план выходит размножение осколков.
3.12. Странные космодромы
Почти каждый космодром выполняет две функции — военную и гражданскую. Важнейшая военная задача — запуск баллистических ракет в сторону потенциального противника. Все «потенциальные противники» расположены в Северном полушарии, поэтому для минимального подлетного времени требуется полет ракеты через область Северного полюса. Кроме того, для разведывательных и гражданских целей запускают спутники дистанционного наблюдения всей поверхности Земли, которые по определению должны двигаться на полярных орбитах. Действительно, на экваториальной орбите спутник «видит» только область экватора. Чем больше наклон орбиты к экватору, тем шире область наблюдения. На полярной орбите спутник благодаря вращению Земли за 12 часов может «увидеть» всю Землю.
Кроме этого, большие преимущества для наблюдения земной поверхности дает солнечно-синхронная орбита (иногда ее называют гелиосинхронной) — это геоцентрическая орбита с такими параметрами, что объект, находящийся на ней, проходит над любой точкой земной поверхности приблизительно в одно и то же местное солнечное время. Например, наблюдение в утреннее и вечернее время, благодаря длинным теням, позволяет заметить небольшие объекты. Поэтому спутник должен все время двигаться недалеко от линии терминатора, которая всегда проходит недалеко от полюсов (не дальше 23,4°).
Чтобы орбита была гелиосинхронной, ее параметры выбирают такими, чтобы она прецессировала в восточном направлении на 360° в год (приблизительно на 1 градус в день), компенсируя вращение Земли вокруг Солнца. Прецессия происходит за счет взаимодействия спутника с Землей, несферичной из-за полярного сжатия. Скорость прецессии зависит от наклонения орбиты. Нужной скорости прецессии можно достичь лишь для определенного диапазона высот орбит (как правило, выбираются значения 600÷800 км, с периодами 96÷100 минут), необходимое наклонение для упомянутого диапазона высот — около 98°. Иными словами, гелиосинхронная орбита — это практически полярная орбита.
При запуске спутника на полярную орбиту с экваториального космодрома пришлось бы скоростью ракеты компенсировать вращение Земли, которое в данном случае только мешает. Поэтому высокоширотные космодромы в этом случае выгоднее.
3.13. К антиподам
Пусть М⊕ — масса Земли и R⊕ — радиус Земли. Полет спутника по низкой орбите от одного полюса к другому займет половину его орбитального периода:
Теперь определим продолжительность полета снаряда через шахту. Поскольку распределение плотности вещества внутри Земли имеет довольно сложный вид, мы рассмотрим два крайних случая.
а) Пусть Земля — однородный шар. На расстоянии r от центра Земли снаряд испытывает притяжение только от внутренней части планеты радиусом r и массой M(r) = M⊕(r/R⊕)3. Следовательно, он движется с ускорением
(знак минус говорит здесь о том, что направления векторов r и a противоположны). Как видим, это уравнение простых гармонических колебаний, возникающих в том случае, когда возвращающая сила пропорциональна отклонению тела от точки равновесия. В нашем случае эта точка — центр Земли.
Решить это уравнение можно по аналогии с уравнением малых колебаний маятника:
где g — ускорение свободного падения, L — длина маятника, r — его отклонение. Как известно, период колебания маятника составляет
Значит, период колебания снаряда в шахте (независимо от амплитуды колебания!) составит
А полет между полюсами будет длиться
Таким образом, в случае однородной Земли снаряды прибудут к Южному полюсу одновременно (Т1 = Т2a).
Однако известно, что к центру Земли плотность увеличивается, поэтому рассмотрим другой крайний случай.
б) Пусть вся масса Земли сосредоточена в ее центре. Тогда ускорение снаряда
Это уравнение движения в поле точечной массы, типичное для тел Солнечной системы. Движение нашего снаряда по радиальной орбите можно представить как движение по вырожденному эллипсу с эксцентриситетом, практически равным единице. Тогда большая полуось этого эллипса равна R⊕/2, а орбитальный период
Это в раз меньше, чем Т1 или Т2a. Очевидно, что истинное значение времени полета снаряда через шахту (Т2) удовлетворяет неравенству Т2a>Т2>Т2б. Следовательно, Т2<Т1, т. е. снаряд, отпущенный падать в шахту, достигнет противоположной точки Земли быстрее, чем снаряд, выведенный на орбиту. Как видим, это очень удобный вид межконтинентального транспорта и к тому же совершенно бесплатный (если не считать затрат на создание шахты и поддержания в ней вакуума!).
Задача решена. А теперь попробуйте рассмотреть третий вариант распределения плотности Земли — совершенно невероятный: пусть вся масса планеты сосредоточена в ее бесконечно тонкой оболочке, а внутри — пусто. Желаю успеха!
3.14. К антиподам разными путями
На снаряд, движущийся в плоскости экватора, будет (в системе отсчета, связанной с Землей) действовать центробежная сила, ослабляющая силу тяготения. Поэтому он пройдет через центр Земли позже и не столкнется с полярным снарядом, а на путь к антиподам затратит большее время. Полярный снаряд его опередит.
3.15. Связь между полюсами
Максимальную широту, на которой геостационарные спутники еще видны над горизонтом, определим из условия видимости объекта на горизонте
где rГС = 42 166 км — радиус орбиты геостационарного спутника. Приняв Землю за шар и взяв R⊕ = 6371 км, получим φ = 90° — 8,7° ≈ 81°. На более высоких широтах и тем более на полюсах Земли геостационарные спутники не видны с уровня моря. Значит, и связь с их помощью невозможна.
3.16. Маршрут по Луне
Кроме очевидного решения (южный полюс) существует еще бесконечное число таких точек в районе северного полюса, на расстоянии от него (35 + 20/2πn) км, при n = 1, 2, …
3.17. Посадка на Марс
Автор ошибочно привел значение скорости на низкой околоземной орбите, тогда как для Марса значение этой скорости существенно меньше — всего около 12 800 км/ч.
3.18. Летим на Солнце
Простейшее решение — после разрыва гравитационной связи с Землей развить скорость ее орбитального движения (около 30 км/с) в сторону, противоположную этому движению, т. е. «остановиться» на орбите и начать падать на Солнце по радиусу-вектору. Для этого вблизи Земли с учетом ее притяжения ракете необходимо развить скорость (мы помним, что сумма кинетических энергий — это сумма квадратов скоростей)
Заметим, что до такой скорости еще ни одна ракета не разгонялась. Поэтому более разумное решение — использовать для изменения скорости ракеты притяжение какой-либо планеты, совершив вблизи нее пертурбационный (гравитационный) маневр. Например, направив ракету к Юпитеру со скоростью около 16 км/с, можно таким образом рассчитать ее движение, что, сблизившись с планетой-гигантом, она изменит траекторию и упадет на Солнце. К сожалению, притяжения Марса для этого недостаточно.
3.19. Взлетаем
Пусть F — сила притяжения тела к Земле. Вес — это сила, с которой тело давит на опору. С такой же по величине силой опора давит на тело (третий закон Ньютона). Обозначим эту силу через F1. Вместе с ракетой тело движется вверх с ускорением g, и, следовательно, сумма F2 всех действующих на него сил равна mg (второй закон Ньютона). Положительным направлением мы выбрали направление движения ракеты, т. е. вверх. Поскольку
F2 = F + F1,
получим
F1 = F2 − F,
где F2 = mg и F = −mg. Отсюда F1 = 2mg. Таким образом, у поверхности Земли вес тела равен 2mg. С удалением от Земли сила притяжения F уменьшается, приближаясь к нулю (закон тяготения Ньютона). В предельном случае при F = 0 и F1 = F2 вес тела будет равен mg. Итак, вес тела убывает от 2mg у поверхности Земли до mg на бесконечности.
3.20. Из пушки на Луну — 1
Если при выстреле сообщить аппарату достаточно большую скорость, такую, чтобы, выйдя за пределы земной атмосферы, он двигался со скоростью больше второй космической, то при правильном выборе направления выстрела аппарат будет двигаться по кеплеровской орбите и сможет достигнуть Луны, Марса, Солнца. Но спутником Земли он не станет. Ведь в этом случае, двигаясь по эллипсу вокруг Земли и завершая первый оборот, аппарат должен будет пройти через точку старта, что непременно приведет к его столкновению с Землей или по крайней мере с ее атмосферой.
Поэтому просто из пушки запустить ИСЗ нельзя. Однако идея наземного ускорителя («пушки») для запуска ИСЗ все же не отброшена. Подумайте, при каких условиях она может быть реализована.
3.21. Из пушки на Луну — 2
Для достижения скорости V = 11 км/с, необходимой при старте к Луне, двигаясь с ускорением а, нужно пройти путь
Такую глубокую шахту создать невозможно. Вес человека в момент выстрела увеличился бы в 11 раз (см. задачу 3.17 «Взлетаем»). Для человека это предельная перегрузка. Однако приборы спутников могут выдерживать ускорение до 104g. При этом длина пушки сокращается до 1 км, что технически вполне осуществимо.
3.22. Бег в невесомости
Из формулы для центростремительного ускорения (a = v2/r) найдем значение Тогда для a = g получим Это нормальная скорость бега для тренированного человека. Ориентация станции в данном случае никакого значения не имеет.
3.23. Объехать астероид
Нет, не смогут. Вездеход должен двигаться со скоростью не больше первой космической (VI), иначе он оторвется от поверхности и потеряет опору. Найдем время облета астероида по низкой орбите с этой предельной скоростью:
Учтем, что плотность астероида выражается так:
Тогда
Это очень важная формула. Она показывает, что время оборота по низкой орбите зависит не от размера притягивающего тела, а только от его средней плотности.
Для поиска численных значений удобно помнить, что у низколетящего спутника Земли Т = 1,5 часа, а плотность Земли ρ⊕ = 5,5 г/см3. Тогда для планеты плотности ρ получим: Т = 1,5 час если плотность измеряется в граммах на 1 см3.
Зная плотность астероида, определим Значит, вездеход не сможет объехать астероид за 2 часа. За такое время его нельзя облететь даже на ракете с выключенными двигателями. А с включенными? См. задачу 3.25 «Спасти космонавтов».
До сих пор мы предполагали астероид не вращающимся. Но если он вращается вокруг оси (а большинство астероидов вращается, и довольно быстро, с периодами в несколько часов), то, двигаясь в сторону, противоположную вращению, космонавты могли бы объехать астероид за указанное время, не оторвавшись от его поверхности.
3.24. Маятник
Период колебания маятника в вакууме где L — его длина, а — ускорение силы тяжести. Но при прочих равных условиях маятник в сопротивляющейся среде будет колебаться с бо́льшим периодом. Поэтому самыми быстрыми будут часы на Земле, а самыми медленными — лунные часы, помещенные в воздушную среду.
3.25. Спасти космонавтов
Если ракета будет лететь на низкой орбите по инерции, с выключенным двигателем, то двух часов ей не хватит, чтобы облететь астероид (см. задачу 3.23 «Объехать астероид»). Однако есть выход: гравитационной силе притяжения астероида можно «помочь», включив двигатель ракеты. При этом корабль должен быть направлен носом к центру астероида, а двигателем — от него. Давление двигателя увеличит центростремительное ускорение и сократит орбитальный период. Действительно, полное центростремительное ускорение a =V2/R, откуда Тогда орбитальный период на низкой круговой орбите Чем больше ускорение, тем короче период. Лишь бы хватило топлива.
3.26. Слабая ракета
Из условия задачи не ясно, начальному или текущему весу ракеты равна тяга ее двигателей. Поэтому рассмотрим оба варианта. Сразу после начала работы двигателей масса ракеты, а вместе с ней и ее вес начинают уменьшаться за счет выброса сгоревшего топлива. Поэтому тяга двигателей начнет сначала немного, а затем все больше и больше превышать вес ракеты, и она полетит.
Во втором случае предполагается, что тяга и вес постоянно равны. Но и в этом случае полет возможен, если ракета будет разгоняться горизонтально, пока не приобретет первую космическую скорость. Но если старт происходит на планете с атмосферой, то ракета должна быть очень прочной и термостойкой, чтобы не разрушиться от напора воздуха и не сгореть, как метеор.
3.27. К центру Галактики
Поскольку Солнце обращается вокруг центра Галактики со скоростью около 220 км/с, результирующая скорость корабля будет почти такой же и направленной в ту же сторону, что и у Солнца. Иными словами, орбита космического корабля не будет существенно отличаться от галактической орбиты Солнечной системы, и корабль никогда не попадет в центр Галактики.
3.28. Измеряем плотность планеты
Как показано в задаче 3.21 «Объехать астероид», время оборота на низкой орбите
Отсюда ρ = (3,5 час/Т)2 г/см3. Например, из того факта, что ИСЗ на низкой орбите оборачиваются за 1,5 часа, следует, что средняя плотность Земли
Казалось бы, все просто. Нужно лишь определить орбитальный период. Но как космонавты смогут это сделать? Ведь планета под ними вращается, поэтому ее ориентиры не годятся. Закройте книгу и подумайте.
3.29. БАК и черная дыра
Действительно, черная дыра, имея ничтожное сечение и практически не встречая сопротивления, будет падать к центру Земли почти свободно. А пройдя через него, она еще долго будет совершать затухающие колебания между диаметрально противоположными точками земной поверхности, пока не остановится вблизи центра планеты. За какое же время черная дыра впервые достигнет центра планеты?
Вспомним задачу 3.12 «К антиподам». Период обращения спутника на низкой околоземной орбите составляет
Свободный полет к центру Земли длится от до в зависимости от степени концентрации ее вещества к центру. Следовательно, Т1 = 0,25 Р = 22,5 мин, а Т2 = 0,177 Р = 15,9 мин. Очевидно, для Земли это время составит около 20 минут. Именно столько будет падать черная дыра к ее центру, а отнюдь не мгновенно.
3.30. Земля в иллюминаторе
Если со стороны Луны мы видим практически полностью освещенный Солнцем диск Земли, значит, со стороны Земли в этот момент видна темная сторона Луны, иными словами — Луна близка к фазе новолуния. В декабре 1972 г. новолуние было в ночь с 5 на 6 декабря, а полнолуние наступило 20 декабря. Следовательно, это фото Земли было сделано при отлете от Земли к Луне. Дополнительно об этом свидетельствует внешний вид Земли: хорошо видна Антарктида с областью Южного полюса, т. е. наблюдатель был смещен к югу от экватора. Но так и должно быть, поскольку в декабре Солнце на эклиптике находится глубоко к югу от экватора, а Луна в новолуние расположена на небе рядом с Солнцем. Действительно, склонение Луны 6 декабря 1972 г. было −25,5°.
Нужно заметить, что момент старта к Луне выбирался не из желания получить фото «полной» Земли, а из совсем иных соображений. Через 4 дня после старта участники экспедиции прилунялись. В этот момент в точке прилунения должно было быть раннее утро, чтобы тени были достаточно длинными для удобства ориентации пилотов и поверхность Луны еще не успела бы сильно нагреться и не повредила астронавтов и посадочный модуль. Экспедиция «Аполлон-17» прилунилась в конце дня 11 декабря в восточной части лунного диска, где при фазе Луны в этот момент 0,38 Солнце взошло совсем недавно.