Вселенная в вопросах и ответах — страница 14 из 20

4.1. Восьмая или девятая?

В данном случае журналисты не ошиблись: часть орбиты Плутона вследствие ее большого эксцентриситета лежит внутри орбиты Нептуна, поэтому, двигаясь в области перигелия Плутона, «Пионер-10» действительно сначала пересек орбиту девятой планеты и только затем — восьмой. Любопытно, что как раз в те годы и сам Плутон был в этой же области: с 1979 по 1998 г. он был ближе к Солнцу, чем Нептун. Однако о встрече аппарата с планетой не могло быть речи: орбита Плутона слишком сильно наклонена к эклиптике. По этой причине понятие «пересечь орбиту» носит условный характер: имеется в виду, что пересечение траекторий состоялось бы, если бы они лежали в одной плоскости, например, в плоскости эклиптики.

Что касается судьбы «Пионера-10», то многие годы он передавал на Землю данные о магнитосфере Солнца, распределении яркости Млечного Пути, зодиакального света и т. п. Однако 6 августа 2000 г. он перестал отзываться, но в апреле 2001 г. связь была восстановлена. В последний раз сигнал от этого зонда был пойман 23 января 2003 г.; он шел к Земле 11 часов 20 минут. В 12 490 г. «Пионер-10» окажется вблизи Летящей звезды Барнарда, на расстоянии 1,8 пк от нас.

4.2. Сезон великих противостояний

Великими называют такие противостояния, в период которых Марс находится в районе перигелия своей орбиты, т. е. ближе всего к Солнцу и к практически круговой орбите Земли. Поскольку ориентация орбит в пространстве меняется чрезвычайно медленно, великие противостояния происходят приблизительно при одном и том же положении на своих орбитах Земли и Марса. С другой стороны, времена года на планете привязаны к ее положению на орбите. Вот почему великие противостояния Марса приходятся на один и тот же сезон года — приблизительно на 1 сентября.

4.3. Птолемей

Вероятно, Птолемей бы изумился и возмущенно сказал: «Где учился этот нерадивый художник? Я уже не спрашиваю, читал ли он мой великий астрономический трактат, но смотрел ли он когда-нибудь на небо? Каждый древнегреческий ребенок и даже каждый раб знает, что Меркурий и Венера всегда видны недалеко от Солнца. А на этом рисунке они удалились Зевс знает куда! Мы, наблюдая небесные светила с неподвижной Земли, никогда не видим Меркурий под углом более 28°, а Венеру — 47° от Солнца. Это их наибольшие элонгации. Но на этой картине они „убежали“ от Солнца более чем на четверть окружности! Это неслыханная профанация нашей великой древнегреческой науки!»

И мы согласны с Птолемеем. Две тысячи лет назад астрономия была одним из главных школьных предметов, а ныне с ней знакомы немногие. Но лишь этим немногим ведомо, как устроен наш мир на самом деле.

4.4. Светло ли на Плутоне?

Сначала определим, во сколько раз Солнце освещает поверхность Земли сильнее, чем полная Луна. Вычислив разность их видимых звездных величин (26,7m — 12,7m = 14m), найдем это отношение: 2,51214 ≈ 400 000. У планеты, удаленной от Солнца на R а. е., поток солнечного света ослаблен в R2 раз. Следовательно, Солнце будет освещать эту планету в 400 000/R2 ярче, чем полная Луна освещает Землю. Для Плутона (R = 40 а. е.) это составит 400 000/1600 = 250. Иными словами, поверхность Плутона на его среднем расстоянии от Солнца днем освещена так же ярко, как если бы ночью на земном небосклоне сияло 250 полных Лун. Это весьма яркое освещение, при котором можно не только гулять без фонаря, но и читать мелкий шрифт.

4.5. Когда на Плутоне светлее?

Немного округлив числа, будем считать, что Плутон в разных точках своей орбиты располагается от Солнца на расстояниях от 30 до 50 а. е. Вычислим, на сколько звездных величин видимый блеск Солнца для него будет меньше, чем для Земли:

m = 5×lg (30÷50) = 7,4÷8,5.

Видимая звездная величина Солнца у Земли −26,7m. Значит, на Плутоне она будет в разные периоды года (плутонианского) от −18,2m до −19,3m. С другой стороны, блеск Луны в полнолуние составляет −12,7m. Значит, когда Плутон в афелии, Солнце будет освещать его как 2,512 (18,2 − 12,7) = 159 полных лун освещает Землю. А когда Плутон в перигелии, поток света от Солнца у его поверхности повышается до 2,512(19,3 − 12,7) = 437 полных лун. В среднем можно считать, что Солнце освещает Плутон почти в 300 раз ярче, чем Луна в полнолуние освещает Землю. Этого света вполне достаточно, чтобы без фонаря читать книгу и чинить космический скафандр.

4.6. Луна готовит побег?

Подсчитаем: 0,04 м/год × 3 000 000 лет = 120 км. По отношению к нынешнему расстоянию до Луны (384 000 км) это составляет всего лишь 0,03 %. На столько же изменится видимый диаметр лунного диска (30′), т. е. всего лишь на 0,5″, что с большим трудом можно будет заметить в телескоп и совершенно невозможно заметить невооруженным глазом.

В чем же ошибся автор? Вероятно, он спутал миллионы с миллиардами. За миллиарды лет Луна, действительно, заметно удалится от Земли. Правда, этот «побег» будет происходить все медленнее и медленнее, поскольку с расстоянием быстро убывает гравитационное приливное влияние Земли на Луну (см.: Сурдин, 1986 и 2002), которое и служит причиной ее удаления. Расчеты показывают, что окончательный побег Луны так и не состоится, приливный эффект не только удаляет Луну, но и замедляет вращение Земли. Когда орбитальный период Луны возрастет примерно вдвое к нынешнему, земные сутки станут такой же длины. Земля будет смотреть на Луну одним своим полушарием (так же, как Луна сейчас смотрит на Землю), приливный эффект исчезнет, и удаление Луны прекратится. Она останется спутницей Земли. Полагаю, автор детской книжки об этом не знал.

4.7. Фазы Луны

Главная ошибка автора в том, что он перепутал смену лунных фаз с затмениями Луны. Фазы и затмения — не одно и то же! В новолуние мы не видим диск Луны не потому, что на него падает земная тень. Как раз наоборот — Луна в этот момент находится дальше всего от земной тени, в противоположном от нее направлении! Мы не видим Луну в новолуние потому, что к Земле повернута ее темная сторона, не освещенная Солнцем. После новолуния в течение двух недель положение Земли и Луны по отношению к Солнцу меняется из-за движения Луны по орбите. Происходит смена лунных фаз — узкий серп, первая четверть, растущая луна — и постепенно к Земле поворачивается освещенное Солнцем лунное полушарие: наступает полнолуние. Именно в этот момент, в фазе полнолуния, изредка происходят лунные затмения, если тень Земли ложится на Луну. Затмение длится недолго — несколько часов, а смена фаз — месяц.



Как можно перепутать два этих явления? Наверное, авторы некоторых детских книг, а также их редакторы, плохо учились в школе. Вот из таких — любознательных, но неграмотных — и вырастают многие уфологи, охотники за НЛО. Кстати, посмотрим в интернете: Станислав Николаевич Зигуненко — инженер, журналист, исследователь аномальных явлений (т. е. уфолог). Прежде чем исследовать аномальные явления, не худо было бы разобраться с нормальными, особенно таким простыми, как фазы Луны.

4.8. Куда падает Луна?

Казалось бы, ответ на этот вопрос настолько очевиден, что и расчеты-то не нужны: Луна — спутник Земли, следовательно, Земля притягивает ее сильнее всех прочих тел Солнечной системы. Однако доверчивость может нас подвести. Не станем верить на слово, а лучше подсчитаем. Сравнивать будем не силы, а ускорения, поскольку масса самой Луны одинаково входит в формулу для притяжения как к Земле, так и к Солнцу. Пусть aЗ и a — ускорения Луны по направлению к Земле и Солнцу, RЗ и R — расстояния Луны от Земли и от Солнца, а M и M — массы Земли и Солнца. Тогда



Найдем их отношение:



Итак, притяжение Луны к Солнцу более чем вдвое превосходит ее притяжение к Земле. Но Луна не покидает окрестности нашей планеты, потому что разность притяжений Луны и Земли к Солнцу меньше их взаимного притяжения друг к другу! Солнце не в состоянии разорвать взаимную гравитационную связь Земли с Луной.

И вновь мы вспоминаем замечательную (по количеству ошибок) книжку С. Зигуненко «Почему Луна на Землю не падает?» (М.: АСТ, 2015). Теперь на этот вопрос мы можем ответить: «Потому что она падает на Солнце!» Действительно, Луна вместе с Землей находится в состоянии свободного падения на Солнце. Притяжение Земли лишь немного «подправляет» движение Луны так, чтобы она далеко не уходила от нашей планеты.

А как вы думаете, уникальное ли это свойство Луны, или же у других планет тоже есть спутники, которые притягиваются к Солнцу сильнее, чем к собственной планете?

4.9. Экспедиции к Луне

С 1968 по 1972 г. к Луне было запущено девять космических кораблей с экипажем из трех астронавтов в каждом; всего 27 астронавтов. Из них шесть «Аполлонов» успешно осуществили высадку астронавтов на поверхность Луны («Аполлон-11, -12, -14, -15, -16, -17»). Остальные совершили облет Луны («Аполлон-13») или ее орбитальное исследование («Аполлон-8 и -10»). Экспедиция «Аполлон-11» осуществила первую посадку на Луну (Н. Армстронг, Э. Олдрин, 1969). Всего на Луну высаживались 12 астронавтов.

4.10. Упасть на Луне

Пониженная по сравнению с земной сила тяжести на Луне действительно делает падение не столь опасным. Однако потеря равновесия при наклонах тела не связана с величиной силы тяжести: равновесие нарушается в тот момент, когда вертикальная линия, опущенная из центра масс тела, перестает пересекать поверхность опоры (т. е. ступню космонавта, если он опирается одной ногой, или площадку между ступнями, если стоит на двух). Поэтому угол максимального наклона зависит лишь от фигуры и позы космонавта, а не от силы тяжести на планете.

Более того, на планетах с пониженной (относительно Земли) силой тяжести даже легче упасть. Дело в том, что наклон своего тела мы привыкли контролировать не только визуально — по положению окружающих предметов, — но и по ощущению мышечного напряжения. Можете проверить это прямо сейчас: встаньте, закройте глаза и, не сгибаясь в пояснице, попробуйте наклониться вперед. Чувствуя напряжение мышц в стопах ног и спине, вы не позволите себе упасть. Но на планете с малой силой тяжести это «мышечное чувство» подводит. Даже вместе со скафандром человек на Луне весит в 2–3 раза меньше, чем на Земле. Поэтому ему сложнее оценить своим мышечным чувством тот критический наклон, за которым следует падение.

4.11. Восход Земли на Луне — 1

Грамотный любитель астрономии сразу заметит, что утверждение «на лунном небе Земля не должна перемещаться» ошибочно. Она должна перемещаться и действительно перемещается, поскольку Луна испытывает широтные и долготные либрации, т. е. с точки зрения земного наблюдателя она покачивается. Либрации вызваны тем, что Луна движется по эллиптической орбите (это вызывает либрации по долготе), и ее ось не перпендикулярна орбитальной плоскости (чем вызваны либрации по широте). И те и другие происходят с периодом в месяц, причем их размах весьма велик: около ±8° по долготе и около ±7° по широте.

Кроме этих двух наблюдается также суточная, или параллактическая, либрация, которая имеет небольшую амплитуду, около ±1°, и возникает по причине вращения Земли, перемещающей наблюдателя относительно центра планеты. Но к нашей задаче она отношения не имеет.

Итак, находясь в краевых зонах лунного диска, протянувшихся вдоль видимого с Земли лунного лимба и покрывающих примерно 15 % лунной поверхности, мы могли бы наблюдать восходы и заходы Земли, поскольку видимый с Луны размер земного диска составляет 1,8°, что намного меньше диапазона либраций. Разумеется, об этом отлично знал художник, автор сюжета марки, герой-космонавт Алексей Архипович Леонов, который в те годы интенсивно готовился к полету на Луну. Зато редактор марки оказался недостаточно подготовлен в области астрономии, что и привело к забавному филателистическому казусу. Впрочем, как любая ошибка на марках, это лишь усилило интерес филателистов к «запечатанной лунной марке» и повысило ее коммерческую стоимость.

4.12. Восход Земли на Луне — 2

Положение земного диска вблизи лунного горизонта сразу же говорит нам о том, что наблюдатель располагался в либрационных секторах Луны, находящихся на границе ее видимого и невидимого с Земли полушарий. Судя по полностью освещенному Солнцем земному диску, съемка проводилась в период новолуния. Между крайними кадрами Земля переместилась чуть больше, чем на свой угловой диаметр (1,8°), т. е. примерно на 2°, что вполне укладывается в амплитуду либраций Луны по долготе (около ±8°) и по широте (около ±7°). Поскольку очертания материков на Земле не видны, а значит, установить ориентацию земной оси невозможно, трудно сказать, в каком именно месте либрационных секторов Луны сделаны эти снимки. (Хотя повышенная облачность в двух местах земного диска намекает нам на то, что это полярные области. А значит, и наш наблюдатель, скорее всего, находится в высоких широтах Луны.)

Казалось бы, все сходится: перед нами эффект либрации. Однако некоторые детали на снимках указывают, что это не так. Во-первых, внешний вид Земли между снимками не изменился, а значит, между крайними кадрами прошли минуты или часы, но не дни или недели, что требуется для заметного эффекта либраций. Во-вторых, изменился вид лунной поверхности, следовательно, наблюдатель перемещается по ней или над ней. В-третьих, на снимках стоит копирайт японского космического агентства. Все вместе это говорит о том, что снимки сделаны с борта японского лунного спутника «Кагуйя» (Kaguya, 2007–2008), который двигался по полярной орбите высотой 100 км. Дата съемки — 11 апреля 2008 г.

4.13. Полярная Луны

Полюс вращения Луны практически совпадает (разница на 1,5°) с полюсом эклиптики, который лежит в Драконе. Там нет ярких звезд. Но «черпак» Ковша Малой Медведицы удален от него на такое же расстояние, как и от конца своей «ручки», где расположена Полярная звезда. Так что, если не требовать высокой точности, то «черпак» Малого Ковша отмечает область северного полюса мира и может быть использован для ориентации на поверхности Луны.

4.14. Приливы

Для начала отметим небольшую неточность. Когда мы говорим о приливах на Земле, то не следует забывать и Солнце: его приливное влияние лишь вдвое слабее лунного. Но главная ошибка автора книги не в этом. Он путает преобразователь энергии с ее источником.

Рассмотрим пример: на реке построили гидроэлектростанцию. Она вырабатывает ток. Что служит его источником? Генератор? Турбина? Плотина? Нет: энергия падающей воды. Плотина — это концентратор энергии воды, которая без нее была бы «размазана» вдоль русла реки. Турбина преобразует потенциальную гравитационную энергию воды в кинетическую энергию ротора генератора, а тот — в энергию электрического тока. Не будь гидростанции, мы бы не смогли извлечь энергию речной воды, но источником этой энергии служит не сама станция, а вода в гравитационном поле Земли.

А теперь вернемся к приливам. Что служит источником энергии приливов? Какое тело теряет энергию, которая передается приливному движению океанской воды? Луна? Нет! Она сама забирает часть этой энергии, медленно удаляясь от нашей планеты за счет взаимодействия с приливными «горбами» Земли (см.: Дарвин, 1965; Сурдин, 1986, 2002). Если бы Земля не вращалась относительно направления на Луну (и Солнце), то не было бы приливного движения океанской воды, не происходили бы приливы и отливы, невозможно было бы использовать их энергию для работы приливных электростанций. Значит, энергия приливов черпается из энергии вращения Земли? Да! Именно поэтому вращение Земли замедляется и продолжительность суток увеличивается.

За последние полвека атомные часы и лазерная локация Луны позволили очень точно измерить действие приливных эффектов. Из-за приливного взаимодействия с Землей радиус лунной орбиты в нашу эпоху возрастает со средней скоростью 38 мм/год, а длительность земных суток под действием тех же приливов возрастала на 23 микросекунды в год. Казалось бы, изменения очень малы. Но умножьте их, например, на миллиард лет, и вы почувствуете, как это много.

Правда, в нашу эпоху движение материков так изменило конфигурацию океанов, что это способствует приливам. Раньше они были слабее. По палеонтологическим данным (дающим число солнечных суток в году), за последние 620 млн лет средняя скорость удаления Луны составила 22 мм/год, а длительность суток возрастала в среднем на 12 мкс/год. Но в далеком прошлом приливы были сильнее, поскольку Луна была ближе к Земле. Впрочем, ее роль, как мы уже поняли, та же, что и у плотины ГЭС: она лишь создает условия для превращения энергии вращения Земли в энергию приливов, но сама не служит источником энергии, а, напротив, частично потребляет ее.

Итак, на вопрос задачи мы ответим: автор не понял физику приливов и запутал юного читателя. К сожалению, в детской литературе это не редкость (см., например, задачи 4.7 «Фазы Луны» и 4.6 «Луна готовит побег?»). Будьте внимательны! Неверные представления могут остаться с вами надолго, а то и навсегда. В этом я регулярно убеждаюсь, общаясь со студентами и даже школьными учителями.

4.15. Земля остановилась

Падение по радиусу-вектору к Солнцу с расстояния R можно представить как движение по предельно сжатому эллипсу с большой полуосью а = R/2. Время падения t равно половине орбитального периода Р на этой орбите. Значение P легко определяется из 3-го закона Кеплера путем сравнения с движением Земли: (P/1 год)2 = (0,5R/R)3. Отсюда P = 1/23/2 года, а t = P/2 = 1/25/2 = 65 суток.

Скорость падения издалека на поверхность небесного тела равна второй космической скорости на этой поверхности


4.16. Метеоритные кратеры на Венере

Это объясняется защитным действием плотной атмосферы Венеры. Метеорное тело легко, почти без потери скорости, пробивает атмосферу планеты, если поверхностная плотность тела не уступает значительно поверхностной плотности атмосферы (т. е. массе атмосферного столба на квадратный сантиметр его поверхности). Для Венеры ее легко оценить, сравнив атмосферы Венеры и Земли. Поскольку ускорения силы тяжести на этих двух планетах почти одинаковы, поверхностные плотности атмосфер пропорциональны их давлениям у поверхности. Давление земной атмосферы 1 бар, т. е. 1 кг/см2, что эквивалентно столбу воды высотой 10 м или камня высотой 3–4 м. На Венере давление почти в 100 раз выше, что эквивалентно 1 км водяного столба или 300–400 м каменного. Эти оценки относятся к перпендикулярному к поверхности полету тела. Если же учесть, что в большинстве случаев метеорное тело входит в атмосферу под углом к поверхности, то полученные значения следует увеличить в 1,5÷2 раза.

Таким образом, без потери своей космической скорости к поверхности Венеры сквозь ее атмосферу может прорваться ледяная глыба (ядро кометы) размером более 1÷2 км или каменная размером 0,5÷1 км. Для метеоритных кратеров на Земле неплохо выполняется соотношение между диаметром кратера и ударника — 20: 1. Поверхность Венеры и сила тяжести похожи на земные, поэтому и для нее можно принять такое же соотношение. Километровый метеорит образует на Венере кратер диаметром около 20 км. Более крупные кратеры будут возникать на Венере так же легко, как кратеры диаметром 100÷200 м возникают на Земле: для их ударников атмосфера не служит препятствием. А вот кратеров мельче 20 км на Венере должно быть очень мало. Действительно, кратеров диаметром менее 2 км на Венере нет, а диаметром до 25÷30 км — относительно мало.

4.17. Ошибки в системах мира

На рисунке 1 шесть ошибок: 1, 2 — неверное положение Меркурия и Венеры относительно Солнца (они должны располагаться между Солнцем и Землей), 3 — неверное направление освещенной стороны Луны (она должна быть направлена к Солнцу), 4, 5, 6 — Марс, Юпитер и Сатурн неверно размещены на своих эпициклах (их положение должно быть связано с положением Солнца).

На рисунке 2 одна ошибка: неверное направление освещенной стороны Луны (она должна быть направлена к Солнцу).

4.18. Солнце с крыльями

Вероятно, изображение Солнца с крыльями показывает, что во время полных солнечных затмений древние египтяне обнаружили корону Солнца, которая действительно иногда имеет форму широко распахнутых крыльев.


4.19. Земля и Марс

Некоторые динамические параметры — диаметр, масса и, как результат, ускорение свободного падения на поверхности — у Земли значительно ближе к аналогичным параметрам Венеры, чем Марса. Однако период суточного вращения, наклонение оси вращения к плоскости орбиты и, следовательно, явления смены времен года у Земли практически такие же, как у Марса. Этому способствует относительное сходство их атмосфер: высокая прозрачность и близость средних температур. Поэтому современные астрономы, как и В. Гершель, считают, что условия на поверхности Земли ближе всего к условиям на Марсе. Прежде всего это касается возможности существования воды в трех фазах — твердой, жидкой и газообразной. В то время как на поверхности Венеры жизнь исключена, на Марсе она возможна.

4.20. Марс и Земля

Противостояние и наибольшее сближение пришлись на разные дни из-за того, что орбита Марса не круговая, а существенно эллиптическая. После момента противостояния Земля и Марс двигались к точке перигелия орбиты Марса, продолжая при этом некоторое время сближаться.

Земля проходит вблизи точки перигелия марсианской орбиты в конце августа, а вблизи точки афелия — в конце февраля. Если она встречается там с Марсом (т. е. происходят его противостояния), то расстояние Марса от Солнца в эти дни не меняется, а значит, не меняется его расстояние и от Земли, если считать ее орбиту круговой. (Для знатоков высшей математики: в точках максимума и минимума функции ее производная равна нулю.)

Напротив, в точках орбиты, лежащих между афелием и перигелием, расстояние Марса от Солнца, а значит, и от почти круговой орбиты Земли, изменяется с наибольшей скоростью: в конце мая оно уменьшается, а в конце ноября возрастает. Поэтому наибольшее сближение Земли с Марсом в ноябре опережает момент противостояния, а в мае запаздывает относительно него.

4.21. Проект «Марс»

Понятно, что эвакуироваться с поверхности удобно лишь в те моменты, когда базовый корабль проходит над местом посадки, что происходит, как сказано в проекте, с периодичностью PS = 2 час 26 мин.

Пусть H — высота орбиты над поверхностью планеты, а M и R — масса и радиус Марса. Тогда орбитальный период корабля



где — первая космическая скорость (т. е. скорость движения по круговой орбите) на высоте H. Сама планета и находящаяся на ее поверхности экспедиция тоже вращаются с периодом, равным звездным (сидерическим) суткам Марса P0 = 24,623 часа. Если корабль движется в направлении вращения планеты, то частоту его обращения относительно поверхности (1/PS) найдем как разность его орбитальной частоты (1/PH) и частоты вращения планеты (1/P0):



Подставив все известные нам современные значения переменных, в ответе получаем H = 705 км. Как же так? Ведь должно было получиться ровно 1000 км. Неужели в середине XX в. плохо были известны масса и радиус Марса? Нет, они уже были измерены достаточно точно. Так неужели великий инженер В. фон Браун ошибся и допустил ошибку почти в 300 км? Невероятно! Ведь он был очень грамотный инженер и строил прекрасные ракеты. Быть может, он что-то не учел? Проверим. Если высота орбиты 1000 км, то каков будет ее период? PH = 2 час 25 мин. С точностью до секунды он совпадает с указанным фон Брауном! Значит, великий инженер просто вычислил орбитальный период базового корабля, но не учел вращение планеты. На самом деле корабль на высоте 1000 км будет пролетать над экваториальной базой с периодом



А вот вопрос, над которым Вернер фон Браун очевидно размышлял и пришел к правильному выводу: почему базовый корабль должен летать так высоко над Марсом. Будь он ближе к Марсу — чаще бы пролетал над экваториальной базой, и к нему легче было бы подняться на взлетной ступени. Например, МКС летает над Землей на высоте 400 км. Но фон Браун выбрал для своего корабля орбиту высотой 1000 км.

Даю подсказку: сила тяжести на Марсе в 2,6 раза слабее земной. Следовательно, атмосфера… Дальше подумайте сами.

4.22. Марсоход

Расстояние между Землей и Марсом изменяется от 0,5 а. е. в противостоянии до 2,5 а. е. в соединении. К тому же, после получения изображения, оператор должен отправить команду управления, поэтому время задержки реакции марсохода удваивается, доводя эффективное расстояние до 1÷5 а. е. Как известно, солнечный свет (а значит, и радиоволна) проходит расстояние в 1 а. е. за 500 секунд, значит, после появления препятствия на расстоянии 50 м от марсохода управляющая команда с Земли придет к нему через 500÷2500 секунд. Наихудший вариант — это 2500 секунд, следовательно, скорость аппарата при этой конфигурации Марса и Земли не должна превышать 50 м/2500 с = 2 см/с. В эпоху противостояния ее можно повысить до 10 см/с.

4.23. Полет к Сатурну

Используя 3-й закон Кеплера, гласящий, что квадраты периодов обращения планет пропорциональны кубам больших полуосей их орбит, найдем период астероида (P), сравнив его с орбитальным периодом Земли. Большая полуось орбиты астероида равна (1 + 9,5)/2 а. е. Поэтому



откуда P = 12 лет.

Мы видим, что перелет с Земли к Сатурну по самой выгодной траектории (полуэллиптической траектории Гомана — Цандера) должен продолжаться 6 лет. Однако космический зонд «Кассини» (NASA), ставший спутником Сатурна, был запущен с Земли 15 октября 1997 года, а прибыл к Сатурну 30 июня 2004 года, т. е. провел в пути 6 лет и 8,5 месяца. Как ему удалось нарушить законы небесной механики и с какой целью это было сделано? Разберитесь!

4.24. Пепельный свет Титана

Мы видим пепельный свет Луны, потому что сами находимся на источнике освещения, т. е. на Земле (см. задачу «Пепельный свет» в разделе «Прогулка по Земле»). Именно поэтому солнечный свет, отраженный Землей, полностью освещает ту часть темной стороны Луны, которая в данный момент видна с Земли. Фото Титана сделано космическим зондом «Кассини» (NASA) не со стороны Сатурна, поэтому не видно пепельного света.

Мы можем оценить ожидаемую яркость пепельного света Титана (Т) по сравнению с пепельным светом Луны (Л), сравнивая потоки солнечного света (I) у Земли (⊕) и Сатурна (С), видимый со спутника диаметр планеты (D) и альбедо (A) планеты и спутника. Для этого мы используем расстояния планет от Солнца (R) и спутников от планет (r). Итак, отношение яркостей пепельного света (E) составит:



В астрономических справочниках мы легко найдем значения этих величин и вычислим их отношения.



А теперь можно вычислить отношение



Как видим, ожидаемая яркость пепельного света Титана почти в 5 раз меньше лунного. Какие же факторы играют в этом основную роль? Удаленность Сатурна от Солнца почти полностью компенсируется его большим собственным размером. Альбедо Сатурна и Титана больше, чем Земли и Луны, что дает преимущество Титану. Но главную роль в слабости его пепельного света играет относительная удаленность Титана от Сатурна. Тем не менее на фоне космической темноты пепельный свет Титана должен быть виден. Надо лишь поймать удобный ракурс — сфотографировать Титан со стороны Сатурна в фазе, близкой к «новолунию».

4.25. Кольцо Сатурна

Ослабление света на 1m, т. е. примерно в 2,5 раза, говорит о том, что не менее половины проходящих сквозь кольцо фотонов поглощается или рассеивается в нем. А значит, и твердые частицы самого кольца, пересекая его по толщине (из-за небольшого различия в наклонах орбитальных плоскостей), имеют шанс не менее 50 % столкнуться с другими частицами. Двух пересечений достаточно, чтобы считать этот шанс близким к 100 %. За один орбитальный оборот частица как раз испытывает два пересечения, если не движется точно в центральной плоскости кольца. А если и движется в центральной плоскости, то все равно имеет не меньший шанс столкнуться с теми частицами, которые пересекают эту плоскость.

Орбитальный период (P) частиц в разных областях кольца разный в зависимости от расстояния (R) до центра планеты:



где M — масса Сатурна. Для упрощения вычислений выразим M и R через массу и радиус Земли (⊕), чтобы использовать известный нам орбитальный период на низкой околоземной (гагаринской!) орбите:



Масса Сатурна равна 95,16 M, а радиус наиболее плотной части ярчайшего кольца B — около 100 000 км. Следовательно, орбитальный период частиц в нем равен



Это и есть характерное время между столкновениями частиц. За один орбитальный оборот частица дважды пересекает кольцо по толщине (L). Поэтому характерная скорость взаимного столкновения частиц V ≈ 2L/P. Толщина колец Сатурна оценивается от 10 м до 1 км. Примем L = 100 м, тогда V≈ 200 м / 9,6 час = 6 мм/с. Столь мягкие касания скорее могут привести к слипанию частиц, чем к их разрушению.

5. В гостях у братьев Стругацких