7.1. Человек против Солнца
Действительно, полная мощность энерговыделения у Солнца чрезвычайно высока — около 4 · 1026 Вт. Астрономы называют это светимостью Солнца, поскольку бо́льшая часть этой энергии испускается в оптическом диапазоне, т. е. в виде света. А ведь никакая бабушка столько энергии не излучает и в темноте не светится! Однако речь шла об эффективности генерации энергии, поэтому студент решил проверить, какова мощность Солнца в расчете на единицу его массы. Как известно, масса нашего светила около 2 · 1030 кг. Следовательно, Солнце генерирует энергию в количестве 2 · 10−4 Вт/кг.
А человек?
Заглянув в справочник по физиологии человека, студент узнал, что в состоянии абсолютного покоя, например во сне, человеческое тело выделяет тепло в количестве 50÷60 Вт. В состоянии бодрствования, сидя за столом, — около 100 Вт. При быстрой ходьбе — 150÷200 Вт. При интенсивной физической работе — около 300 Вт. А при крайнем напряжении сил (работа кузнеца-молотобойца, схватка боксеров) — около 500÷700 Вт. Бабушка у студента была небольшая, весила около 60 кг и не способна была работать в кузнице или боксировать на ринге. Обычно она работала на кухне за столом или неспешно ходила в магазин за продуктами. Поэтому студент решил, что средняя мощность бабушки составляет около 120 Вт (на языке автомобилистов это 0,16 лошадиной силы). Таким образом, удельное энерговыделение бабушки составляет 2 Вт/кг. То есть в 10 000 раз больше, чем у Солнца! Аспирант оказался прав.
Продолжая свои изыскания, студент выяснил, что с такой же эффективностью, как Солнце, выделяет тепло куча прелых листьев. Решив проверить это, студент вышел на улицу и быстро нашел то, что искал. Был конец сентября, и дворники сметали в кучи мокрые опавшие листья, которые потихоньку гнили на ветру. Засунув руку в кучу листьев, студент почувствовал, что там немного теплее, чем снаружи. Но это были не те миллионы градусов, при которых протекают термоядерные реакции, и кучи листьев не светились, как маленькие солнышки. И тем не менее расчет был верным; просто дворники были недостаточно расторопными. Если бы они собрали из прелых листьев огромную кучу с массой как у Солнца, то она и засветилась бы как Солнце! А если такую же кучу сложить из бабушек…
«Впрочем, — подумал студент, — даже одна моя бабушка — это настоящее маленькое солнышко. От нее в доме всем теплее и светлее на душе».
7.2. Солнце из угля
Очевидно, длительность свечения угольного или нефтяного Солнца составит t = QM⊙/L⊙, где M⊙= 2 · 1030 кг и L⊙ = 4 · 1026 Вт — масса и светимость Солнца; Q = 2 · 107 Дж/кг. Тогда t = 3000 лет. Это даже короче письменной истории человечества.
7.3. Солнце сжимается
У этой задачи интересная история. Еще в середине XIX века астрономы поняли, что тепло, выделяющееся при химических реакциях, не может поддерживать солнечную светимость на современном уровне дольше нескольких тысяч лет (см. задачу «Солнце из угля»). Тогда немецкий врач Юлиус Майер (1814–1878), исследования которого привели к открытию закона сохранения энергии, предположил, что Солнце светит за счет тепла, выделяющегося при падении на его поверхность комет и метеоритов. Но притяжение Солнца не может разогнать падающие тела до скорости свыше 618 км/с (вторая космическая скорость на поверхности Солнца). Учитывая, что при торможении в тепло переходит кинетическая энергия тела (mv2/2), легко подсчитать, что для поддержания светимости Солнца на него ежегодно должна падать масса, почти равная массе Луны. При таком темпе аккреции через 30 млн лет масса Солнца возросла бы вдвое по сравнению с нынешней. Как выяснилось позже, именно падение околозвездного вещества обеспечивает высокую светимость самых молодых звезд и некоторых старых «звездных остатков» — белых карликов, нейтронных звезд, черных дыр. Но к Солнцу и подобным ему звездам среднего возраста, пребывающим «в полном расцвете сил», процесс аккреции отношения не имеет. Астрономы XIX в. подтвердили, что не наблюдают падения комет на Солнце в таком количестве.
Обдумывая идею Майера, немецкий естествоиспытатель Герман Гельмгольц (Hermann von Helmholtz, 1821–1894) предположил, что на Солнце не обязательно должно что-то падать снаружи: «падать» на него может… вещество самого Солнца. Посмотрим еще раз на формулу для кинетической энергии (mv2/2): большой приток энергии обеспечивается либо высокой скоростью, либо большой массой. Поддержание высокой температуры звезды может происходить вследствие ее медленного сжатия. Сила тяготения при сжатии звезды совершает над газом работу, и это приводит к его нагреву. По расчетам английского физика Уильяма Томсона, барона Кельвина (William Thomson, 1st Baron Kelvin, 1824–1907), чтобы поддерживать свою светимость на современном уровне, Солнце должно ежегодно сжиматься всего на 90 метров, т. е. примерно на 1/15 000 000 долю своего радиуса. По оценке Томсона, сжимающееся Солнце могло светить не менее ярко, чем сегодня, на протяжении почти 30 млн лет.
Проверим это самостоятельным расчетом. Если ускорение силы свободного падения g = GM/R2, то работа силы тяжести по перемещению массы m на расстояние h составляет
Если сжатие звезды происходит под действием собственной силы тяжести, то m = M и h ≈ R. Тогда
Это приблизительная оценка, но если вы умеете интегрировать, то можно доказать это точно. Гравитационная энергия тела, выделяющаяся при его сжатии от очень большого размера до радиуса R, составляет αGM2/R, где α — коэффициент порядка единицы, зависящий от распределения массы внутри тела.
Если сжатие происходит медленно, квазистатически, то в недрах звезды должно поддерживаться гидростатическое равновесие, а значит, по мере сжатия должны возрастать давление и температура. Несложно показать, что выделяющаяся при сжатии гравитационная энергия будет при этом делиться пополам: одна половина пойдет на нагрев недр звезды, а вторая — на излучение. Для знатоков теоретической механики сошлюсь на теорему о вириале. А для любителей небесной механики и космонавтики — на соотношение энергий у тел, движущихся с первой и второй космическими скоростями.
Приняв α = 1 (к большой ошибке это не приведет), получим характерное время излучения сжимающейся звезды t ≈ GM2/(2RL), где L — светимость (т. е. мощность излучения) звезды. В честь Кельвина и Гельмгольца астрофизики называют эту величину временем Кельвина — Гельмгольца (tKH). Для Солнца tKH≈ GM2⊙/(2R⊙L⊙), где L⊙= 4 · 1026 Вт, M⊙= 2 · 1030 кг и R⊙ = 7 · 108 м — светимость, масса и радиус Солнца. Подставляя эти значения в формулу, получим tKH = 30 млн лет — в точности как у Кельвина! Это характерное время высвечивания Солнцем его гравитационной энергии связи.
7.4. Солнце гаснет
Если у нас есть чувствительный детектор нейтрино, то мы заметим это сразу по прекращению потока солнечных нейтрино, рождающихся в термоядерных реакциях. Но не раньше чем через 8 мин 20 сек — времени, необходимого нейтрино, чтобы со скоростью близкой к световой долететь до Земли. Плюс время срабатывания самого детектора.
Если же у нас нет детектора нейтрино, то обычные астрономические наблюдения долго не позволят нам заметить выключение ядерного источника энергии Солнца, поскольку поддерживать его светимость будет другой источник — гравитационный (см. задачу «Солнце сжимается»). Размер Солнца при этом начнет уменьшаться. Современный угловой радиус Солнца около 15′ = 900″. Он существенно изменится за время Кельвина — Гельмгольца (см. задачу «Солнце сжимается») равное 30 млн лет. То есть скорость его изменения составляет примерно 900″/30 млн лет = 3 · 10–5 угловой секунды в год. Если мы регулярно будем измерять радиус Солнца с точностью до 3″ (это типичное качество изображений на дневном небе), то сможем заметить его изменение лишь через 100 тысяч лет! Обычно размером солнечного диска интересуются астрономы, прогнозирующие и изучающие солнечные затмения. Они-то первыми и заметят уменьшение Солнца.
Кроме размера будет меняться и светимость Солнца, но медленнее, поскольку с уменьшением площади поверхности будет возрастать ее температура. Характерная скорость этого процесса также определяется временем Кельвина — Гельмгольца (30 млн лет). Наблюдаемые сейчас переменность солнечной светимости лежит в пределах 0,1 % и не сказывается на биосфере Земли. Однако расчеты показывают, что изменение светимости на 1 % приведет к изменению средней температуры Земли на 1÷2 K, что, вероятно, будет отмечено биосферой. Характерное время этого изменения не короче 300 тысяч лет.
7.5. Солнце испаряет Землю
Чтобы вода с Земли улетучилась в космос, ее надо нагреть до 100 °C, испарить и сообщить ее молекулам вторую космическую скорость. Теплоемкость воды — 4,2 кДж/(кг · K), а теплота ее испарения — 2256 кДж/кг. В глубине океанов вода холодная, так что нагреть ее придется от 0 °C до 100 °C. Полная работа по испарению килограмма воды составит 2676 кДж. А чтобы удалить молекулы в космос, нужно сообщить им 2-ю космическую скорость: V2 = 11,2 км/с. Для удаления с Земли 1 кг чего угодно потребуется η = (1 кг) V22/2 = 6,27 · 107 Дж. Это значение настолько больше теплоты нагревания и испарения воды, что только им и можно ограничиться.
Справочники подсказывают нам, что объем Мирового океана составляет 1340,74 млн км3, общий объем воды на планете — 1390 млн км3, а общая масса воды M = 1,46 · 1021 кг, что в 4000 раз меньше массы самой Земли. Светимость Солнца L⊙ = 4 · 1026 Вт. И у нас все готово, чтобы получить результат. Время испарения Мирового океана (или всей земной воды, что практически одно и то же) составит
Иными словами, Солнце высушит Землю менее чем через 4 минуты.
Вычислить время полного разрушения Земли немного сложнее, поскольку по мере испарения ее внешних частей на поверхности оставшейся внутренней части будет меняться 2-я космическая скорость. Но, учитывая, что основная масса планеты лежит вблизи ее поверхности (благодаря росту площади шара как R2), ошибка будет невелика, если мы не станем учитывать этот факт. Тогда время полного испарения Земли будет в 4000 раз больше, чем время испарения воды (просто пропорционально их массам). Оно составит 10,6 суток. Полторы недели — и Земли нет. Вот на что способно наше Солнце. Хорошо, что оно этого не делает.
7.6. Пылинка у Солнца
Поскольку это пылинка, т. е. радиус ее (r) мал, будем считать, что она быстро прогревается на всю глубину и всюду — и внутри, и на поверхности — имеет одинаковую температуру (T). Солнце, имеющее светимость L⊙, создает на расстоянии R, вблизи пылинки, освещенность L⊙/(4πR2). Пылинка абсолютно черная, полностью поглощающая солнечный свет, следовательно, на нее падает поток тепла πr2L⊙/(4πR2). В стационарном состоянии такое же количество тепла должно излучаться с поверхности пылинки, площадь которой 4πr2. Излучение абсолютно черного тела описывается законом Стефана — Больцмана:
ε = σT4,
где ε — поток энергии, уходящий с единицы поверхности тела, а σ = 5,67 · 10–8 Вт м–2 K–4 — постоянная Стефана — Больцмана. Значит, пылинка будет излучать с мощностью 4πr2σT4. Из равенства потоков приходящего и уходящего тепла
получим выражение для температуры:
Обратите внимание, что температура пылинки не зависит от ее размера, пока выполняются принятые выше условия. То есть, она не должна быть слишком маленькая (при размере, сравнимом или меньше длины волны излучения, закон Стефана — Больцмана использовать нельзя) или слишком большая (температура на поверхности не будет везде одинаковой). Как известно, L⊙ = 4 · 1026 Вт. Тогда температура составит
Как видим, на орбите Земли у пылинки вполне «комнатная» температура — около 8 °C. На орбите Юпитера (R = 5,2 а. е.) она существенно ниже (123 K = −150 °C), а на орбите Нептуна (R = 30,1 а. е.) пылинка будет совсем холодная (51 K = −222 °C). С другой стороны, на орбите Меркурия (R ≈ 0,39 а. е.) пылинка нагреется до такой степени (450 К = 177 °C), что полностью потеряет летучие вещества (молекулы воды и других легких газов). А вблизи поверхности Солнца (R = R⊙ = 4,7 · 10–3 а. е.) пылинка нагреется до 4113 K = 3840 °C, а значит, наверняка испарится.
7.7. Прозрачное Солнце
Если Солнце мгновенно станет прозрачным, то все фотоны из его недр тут же вырвутся наружу. Нетрудно оценить среднюю энергию фотонов, заполняющих Солнце: по своей температуре излучение находится в равновесии с веществом, а температура последнего характеризуется удельной гравитационной энергией, которая близка к квадрату первой космической скорости на поверхности (440 км/с). Поскольку характерная температура 104 K соответствует скорости 10 км/с, то для скорости 400 км/с получим температуру 1,6 · 107 K (не возбраняется и сразу вспомнить центральную температуру Солнца). Для фотонов, по закону Вина, это λ = 3 мм/Т ≈ 2Å (энергия кванта = 5 кэВ — довольно жесткий рентген).
Продолжительность вспышки легко оценить по световому размеру Солнца: R⊙/c = 2÷3 сек. А мощность — по закону Стефана — Больцмана: 4πR2σT4 (где Т = 16 млн K) = 2 · 1040 Вт = 5 · 1013L⊙. Это будет рентгеновская вспышка невероятной мощности!
7.8. Пятно на Солнце
На второй вопрос ответить легко. Если гигантское пятно полностью состоит из тени, то его температура около 4000 K, а эффективная температура чистой солнечной поверхности около 5800 K. Закон Стефана — Больцмана говорит, что поток солнечного тепла ослабнет в (5800/4000)4 раз, а равновесная температура маленького (или быстро вращающегося) тела понизится в 5800/4000 раз (см. задачу «Пылинка у Солнца»). Если сейчас она составляет около 281 K, то станет 194 K = −79 °C. На самом деле она будет еще ниже, поскольку вся Земля покроется снегом и льдом, отражающими обратно большую часть света. Пожалуй, станет холоднее, чем в лунную ночь в Антарктиде.
На первый вопрос задачи ответить сложнее, поскольку нужно определить, какая часть солнечного излучения попадает в визуальный диапазон спектра при разных температурах поверхности светила. В принципе это можно сделать, если проинтегрировать по частоте излучения произведение двух функций: функции, описывающей солнечный спектр (она близка к функции Планка для спектра абсолютно черного тела), и функции, описывающей чувствительность нашего глаза. Но это сложно. А мы поступим проще: сравним излучение охладившейся до 4000 K поверхности Солнца с излучением лампы накаливания. У обычных лампочек вольфрамовая спираль раскалена до температуры 2700 K, и поэтому основная мощность ее излучения лежит в невидимом инфракрасном диапазоне (закон смещения Вина). Световой КПД такой лампы составляет около 5 %. Если спираль лампы раскалить до температуры около 3400 K (что близко к температуре плавления вольфрама), то КПД достигает 15 %, но лампа при этом быстро сгорает. У энергосберегающих люминесцентных ламп цветовая температура 4200 K и световая эффективность (если верить рекламе) в 5 раз выше, чем у ламп накаливания, т. е. КПД около 25 %. Учитывая это, мы можем с чистой совестью принять для солнечного пятна значение световой эффективности равным 22 %. В этом случае поток видимого света от полностью «запятненного» Солнца понизится в
Теперь понятно, почему пятно на фоне солнечной поверхности выглядит таким темным.
Цвет «запятнанного» Солнца немного сдвинется в красную сторону, но не очень сильно. Дело в том, что голубая часть солнечного света рассеивается в земной атмосфере и в прямых солнечных лучах все равно до нас не доходит (зато тени на снегу в солнечный день имеют голубой оттенок). Именно поэтому свет ламп с цветовой температурой 4200 K называют «дневным».
Поскольку «запятненное» Солнце будет посылать намного меньше голубых лучей, дневное небо станет значительно темнее. Но освещение земной поверхности понизится всего в 20 раз. Вспомнив, что полная Луна освещает Землю в 400 000 раз слабее Солнца (см. задачу 4.4 «Светло ли на Плутоне?»), мы увидим, что «запятненное» Солнце будет светить в 20 000 раз ярче Луны, а это не хуже, чем само Солнце освещает землю в облачный осенний день.
7.9. Черный-черный…
Ответ: в — а — б. Черное тело испускает все, что получило извне. Черный ящик (понятие из кибернетики) выдает хотя бы что-то на выходе. Классическая черная дыра не испускает ничего. Квантовая может, но очень мало.
7.10. Почти со скоростью света
Если звездолет летит со скоростью, близкой к скорости света, то эффект Доплера и эффект аберрации света будут хорошо заметны «на глаз». Первый приведет к тому, что звезды по курсу корабля поголубеют и станут ярче, а за кормой — покраснеют и ослабнут. Второй эффект сдвинет все звезды вперед по курсу. Поэтому в направлении полета на небе будет много ярких голубых звезд, а за кормой — несколько слабеньких красных.
7.11. Солнечный ветер — 1
Давление солнечного ветра равно удвоенному (из-за отражения) потоку импульса летящих протонов:
mpnv2 = 2 · 1,67 · 10–27 кг · 107 м–3 (4,5 · 105 м/с)2 = 6,8 · 10–9 Н/м2.
А давление света — удвоенному потоку импульса квантов:
То есть давление света в тысячу раз сильнее, чем давление ветра на ту же площадь отражателя.
7.12. Солнечный ветер — 2
Будем считать солнечный ветер сферически симметричным с такими же параметрами, как у орбиты Земли (хотя это не совсем так). Тогда удельный поток массы солнечного ветра составит
mpnv = 1,67 · 10–27 кг · 107 м–3 · 4,5 · 105 м/с = 7,5 · 10–15 кг м–2 с–1.
Для солнечного ветра эквивалентный удельный поток массы составляет
То есть в форме излучения Солнце теряет вдвое больше массы, чем в форме корпускулярного потока.
Сложив оба потока (2,4 · 10–14 кг м–2 с–1) и умножив на площадь сферы радиусом 1 а. е., 4π (150 млн км)2 = 2,8 · 1023 м2, получим полный темп потери массы Солнцем: 6,7 · 109 кг/с или 2 · 1017 кг/год. Учитывая полную массу Солнца (2 · 1030 кг), видим, что относительная потеря массы в нашу эпоху составляет 10–13/год.
7.13. Гиганты и карлики
Карлики горяче́е, поскольку для получения одинаковой степени ионизации и возбуждения элементов (которыми и определяется вид спектра) при более высокой плотности необходима более высокая температура. Высокая плотность в атмосфере карликов связана с их большей силой тяжести, дающей меньшую шкалу высот, при которой заметная оптическая толща набирается уже в более плотных областях. В протяженной атмосфере гигантов та же толща набирается еще в очень разреженных, верхних областях атмосферы.
7.14. Нуклеосинтез
По мере выгорания легких элементов в ядре звезды температура и плотность растут со временем, что позволяет формироваться все более сильно связанным ядрам тяжелых элементов. А в ранней Вселенной в результате быстрого расширения температура и плотность уменьшались. Когда температура снизилась настолько, что синтез легких элементов еще мог протекать и при этом ядра дейтерия и гелия уже не разрушались, для синтеза более тяжелых элементов температура и плотность стали уже малы. Произошла так называемая «закалка» — химический состав вещества стабилизировался.
7.15. Синтез гелия
В недрах звезд нет свободных нейтронов, поскольку время их жизни порядка 10 минут. Поэтому в синтезе гелия необходима реакция превращения протона в нейтрон, самая медленная в цепи термоядерных реакций. В ранней Вселенной в первые минуты расширения нейтронов было почти столько же, сколько и протонов, поэтому реакция их объединения в дейтерий и далее в гелий шла очень быстро. Через 5 минут температура и плотность снизились, и реакция прекратилась.