Вселенная. Вопросов больше, чем ответов — страница 12 из 72

н, никем и никогда до­стоверно не зафиксированных.

«Мыльный пузырь» с марсианским «сфинксом», или «ли­ком», закономерно лопнул, как только были получены снимки

69

того же места, сделанные при помощи аппарата «Марс Глобал Сервейер» с десятикратно большим разрешением (4 м) и при ином положении Солнца на марсианском небе. Как и следовало ожидать, «лик» исчез — остался сильно разрушенный эрозией холм без какого-либо намека на искусственное происхождение. Очередной урок фанатичным энтузиастам: не следует смеши­вать науку с научной фантастикой. Последняя как раз и суще­ствует за счет злостного пренебрежения принципом Оккама... Впрочем, можно не сомневаться: надлежащие выводы из исто­рии со «сфинксом» будут сделаны немногими. Фанатиков во­обще трудно образумить, и околонаучные фанатики совсем не исключение.

Если вам хочется, можете скачать из Интернета снимки мар­сианской поверхности и поискать иные «лики». Ручаемся — най­дете. Но куда проще поискать их на обоях с каким-либо абстракт­ным рисунком. Тоже найдете обязательно, причем при варьиро­вании освещения одни «лики» могут пропадать, зато вместо них появятся новые... В обоих случаях это увлекательное занятие для тех, кто располагает избытком свободного времени, но к науке отношения не имеющее.

Если предположить, что плотность газопылевого кокона, оку­тывающего Протосолнце, была везде постоянной, и принять как факт, что световое давление вытолкнуло легкие газы из внутрен­них областей Солнечной системы, то становится понятно, поче­му ближайшая к Солнцу газовая планета является крупнейшей: ей досталось дополнительное газовое вещество из ближайших окрестностей Протосолнца, выметенное световым давлением. На самом деле первоначальная плотность кокона, конечно, увели­чивалась по направлению к центру гравитационного сжатия, что еще сильнее усугубляет картину. Право слово, если бы Юпитер не был крупнейшей планетой в Солнечной системе, этому следо­вало бы удивиться.

«Процесс производства» из газово-пылевой среды не слишком массивных звезд, подобных Солнцу, не очень рас­точителен — значительная часть сжимающегося облака диф­фузной среды превращается в звезду, и лишь небольшой про­цент общей массы идет на формирование планетной системы или постепенно рассеивается в окружающем молодую звезду пространстве. Если бы газово-пылевое облако, породившее Солнце, было значительно массивнее, то на долю «посторон­него», не вошедшего в звезду вещества пришлась бы гораздо большая часть. Можно ожидать, что в таком случае были бы массивнее и газовые планеты — некоторые из них могли бы стать коричневыми карликами или даже нормальными карли­ковыми звездами.

Однако с Юпитером этого не произошло. Коричневыми кар­ликами принято считать звезды в диапазоне масс от 0,013 Д°

0,075 масс Солнца, а Юпитер с его массой в одну тысячную сол­нечной серьезно не дотягивает до статуса даже такой неполно­ценной звезды, как коричневый карлик. Юпитер — планета. Правда, он излучает вдвое больше того, что получает от Солнца,

71

но это легко объясняется крайне медленным сжатием Юпитера. Никакие ядерные реакции в его недрах не идут — слишком мала температура.

Юпитер вращается быстрее всех газовых планет, делая обо­рот вокруг оси всего лишь за 9 ч 50,5 мин на экваторе и на 5 мин медленнее в высокоширотных зонах. Зональное вращение ха­рактерно как для звезд, так и для газовых планет. Из-за быстро­го вращения диск Юпитера сплюснут (1:15), что легко замечает наблюдатель в самый скромный телескоп.

Также при беглом взгляде на диск Юпитера бросается в глаза его широтная полосатость. (По количеству видимых полос удоб­но тестировать оптику и пригодность атмосферы для наблюде­ний.) Видимая поверхность Юпитера есть не что иное, как облач­ный покров, разделенный на зоны быстрым вращением планеты. Бывает, что относительная скорость двух наблюдаемых деталей, находящихся в соседних зонах, доходит до 300 км/ч. При таких обстоятельствах края зон находятся в турбулентном движении, что выглядит как фестоны на краях полос*

Естественно, наиболее распространенное вещество в Юпите­ре — водород. Его там 82%, гелия —17%, а оставшийся процент приходится на долю других элементов. В атмосфере Юпитера присутствуют метан, этан, аммиак, кристаллики водяного льда, бисульфида аммония и т. д. Внешние слои планеты — чисто газовые, однако на глубине в 0,15 радиуса планеты водород приобретает металлические свойства и становится жидким. Его температура при этом достигает 2000 °С. Далее, на глуби­не 0,9 радиуса планеты водород переходит в твердое состоя­ние с плотностью 11 г/см3, температурой 20 ооо К и давлением в 50 Мбар.

Разумеется, пока еще никто не нырял в Юпитер с термометром и барометром — мы привели расчетные данные. Возможно их дальнейшее уточнение, но качественно картина, по-видимому, не изменится.

Протяженная атмосфера большой и быстро вращающей­ся планеты просто обязана быть бурной. Так оно и есть на са­

72

мом деле. Ураганные, по земным понятиям, ветры со скоростью 150 м/с — нормальное явление для Юпитера. Часто на диске планеты видны округлые образования, отличающиеся цветом от окружающих областей, причем сразу несколько, — это гигант­ские атмосферные вихри, напоминающие наши ураганы, только в большем масштабе. Обычно они существуют от нескольких не­дель до нескольких месяцев, но бывают и вихри, живущие десят­ки лет. Они возникают, исчезают, сливаются друг с другом, т. е. в первом приближении ведут себя подобно земным атмосфер­ным вихрям, конечно, с поправкой на масштаб. Так, например, весной 1998 года два вихря поперечником в ю тыс. км каждый, известные как Белые Овалы и существовавшие порознь более бо лет, слились в один вихрь.

Есть на Юпитере и один супервихрь, наблюдаемый уже более 300 лет. Это знаменитое Красное Пятно размером 48 х 12 тыс. км. Любопытно, что в последние десятилетия Красное Пятно за­метно поблекло и уже не так ярко выделяется на диске планеты. Может быть, оно исчезнет совсем, а может быть, вновь «соберет­ся с силами» — будущее покажет.

На Юпитере открыта область, хорошо отражающая радио­волны и не совпадающая с Красным Пятном. Пока неизвестно, что это такое.

Электрическая активность атмосферы высока. Если в земных облаках молнии свыше 50 км длиной — большая редкость, то на Юпитере обычны молнии юоо-км длины. Магнитное поле планеты огромно — в 40 тыс. раз интенсивнее земного. Юпитер окружен мощными радиационными поясами. Впервые их пре­одолел «Пионер-ю», причем наведенные токи в аппаратуре втрое превысили допустимое значение, однако аппарат остал­ся цел.

Еще Галилей открыл 4 спутника Юпитера, которые и сегодня называют галилеевыми. Это Ио, Европа, Ганимед и Каллисто. Наклон их орбит к экватору планеты мал, и часто можно ви­деть, как галилеевы спутники выстраиваются цепочкой. Эти спутники можно было бы видеть невооруженным глазом, если

73

бы не мешал яркий блеск Юпитера. Некоторые уверяют, что видели-таки их невооруженным глазом при очень хорошем небе, закрыв диск планеты каким-нибудь маленьким экраном, хотя бы тонкой веточкой. У пишущего эти строки подобный эксперимент не увенчался успехом, но если хотите — попро­буйте, вдруг вам повезет больше? И уж во всяком случае не упустите, если представится такая возможность, понаблюдать в телескоп за прохождением одного из галилеевых спутников по диску планеты. Он отбросит тень на диск, и это замечатель­ное зрелище.

Любопытно, что плотность галилеевых спутников падает с удалением от Юпитера — она максимальна у Ио и минимальна у Каллисто. Вряд ли подобное сходство с планетами случайно. Поскольку происхождение галилеевых спутников несомненно связано с происхождением Юпитера, приходится предположить, что излучение протопланеты (инфракрасное, конечно) в период гравитационного сжатия было достаточно интенсивным, чтобы вымести легкие элементы на периферию. Соответственно, Ио формировалась из более тяжелого вещества, а уж Каллисто — «из того, что осталось».

Ио — единственное, не считая Земли, космическое тело с регу­лярно наблюдаемым вулканизмом. Почему этот небольшой шар диаметром всего 3640 км ведет себя столь активно? Ведь на бо­лее крупном и тяжелом Меркурии, а также на Марсе ничего по­добного не наблюдается, хотя вулканы на Марсе есть. Причина кроется в приливном воздействии со стороны Юпитера, гораз­до более мощном, чем воздействие Земли на Луну. Не будь Ио столь близка к Юпитеру, ее недра давно уже успокоились бы. Свою долю вносят и приливные возмущения со стороны Европы и Ганимеда. В твердой коре Ио амплитуда приливов достигает 100 м! Приливные силы выполняют громадную работу; мощ­ность выделяемого недрами Ио тепла составляет 2 вт с каждо­го квадратного метра, что в 30 раз выше, чем на Земле. Трудно ожидать, что это тепло будет выделяться равномерно — и дей­ствительно, поверхность Ио испещрена горячими точками и вул­

74

канами, через которые главным образом и происходит тепловы­деление. Вулканы Ио выбрасывают огромное количество серы и ее соединений, все ее поверхность покрыта ими, поэтому цвет Ио — оранжевый. В кратерах земных вулканов сера осаждается в результате разложения сернистых газов, и ее относительно не­много. В противоположность этому, вулканы Ио фонтанируют жидкой серой. Поскольку свободного кислорода на Ио крайне мало, гореть этой сере не в чем — приходится накапливаться на поверхности.

Жидкие недра Ио имеют следствием собственное магнитное поле этого спутника, оно создает «пузырь» внутри мощного маг­нитного поля гигантской планеты.

У Ио есть разреженная атмосфера (да и как ей не быть при непрекращающемся вулканизме!), верхняя часть которой явля­ется ионосферой. «Галилео» передал на Землю фотографии Ио, сделанные в тени Юпитера. На них отчетливо видны полярные сияния, вызванные возбуждением атомов ионосферы высокоэ­нергичными космическими частицами, разогнанными магнит­ным полем Юпитера.

Второй галилеев спутник — Европа — интригует ученых как возможная колыбель внеземной жизни. Светлая окраска Европы давно наводила на мысль о ледяной коре (рис. 9). Детальные фо­тоснимки «Галилео» выявили в ледяном панцире Европы весьма разветвленную сеть замерзших трещин, а многие участки выгля­дят как торосистый лед. Причина трещиноватости и торошения опять-таки кроется главным образом в приливном воздействии со стороны Юпитера, более слабом, чем у Ио, но все-таки замет­ном. Крайне вероятно, что под ледяным панцирем Европы на­ходится океан, возможно, покрывающий всю поверхность этого спутника. Темный цвет трещин указывает на то, что по ним под­нималась вода, впоследствии застывшая. Метеоритных кратеров на Европе немного, и они невелики, что и неудивительно: круп­ные метеориты — фактически астероиды, — способные пробить ледяной панцирь, оставляют кратеры, которые будут заполнены водой. Вода, естественно, замерзнет и скроет следы удара, если