ляются осколками этих 36 (или более) первоначальных тел, разрушенных при столкновениях друг с другом.
Поясним. Любое космическое тело, превышающее поперечником 250-300 км, под действием собственной гравитации принимает более или менее шарообразную форму. Это становится особенно очевидным, если внимательно рассмотреть спутники
93
планет. Давление вышележащих слоев поддерживает внутренние области планетоида в пластичном состоянии, напоминающем уже не твердое тело, а чрезвычайно вязкую жидкость — совсем как в земной мантии. Данная «жидкость» охвачена конвективными движениями, протекающими с весьма низкой скоростью (сантиметры или даже миллиметры в год). Причиной этих движений служит гравитационная дифференциация вещества — тяжелые элементы (прежде всего металлы группы железа) тонут, легкие (силикаты) всплывают. Процесс этот весьма долгий: даже наша Земля, несмотря на ее значительную массу и почтенный возраст, успела собрать в ядре только 85% железа, а 15% по-прежнему находится в мантии и земной коре.
За те сотни (не более) миллионов лет, в течение которых первоначальные планетоиды — прародители астероидов — испытали взаимные столкновения, оказавшиеся для них катастрофическими, процесс гравитационной дифференциации вещества в них, можно сказать, только начался. Не приходится удивляться тому, что лишь 5% известных нам метеоритов являются чисто железными (типа Сихотэ-Алиньского метеорита), а около 70% — железо-каменными (типа «Палласова железа»). Первые, судя по всему, являются осколками железных ядер первоначальных планетоидов, а вторые — мантийными фрагментами. Чисто каменные метеориты — осколки внешних твердых оболочек планетоидов, уже потерявших железо. Изредка (менее 1% всех находок) попадаются углистые хондриты — метеориты рыхлого строения с высоким содержанием углерода, представляющие собой легкие шлаки.
Пока трудно сказать, являются ли крупнейшие из астероидов (Церера, Веста, Паллада) уцелевшими первичными телами или же они имеют вторичное происхождение. Относительно более мелких астероидов, не имеющих сфероидальной формы, можно не сомневаться — обломки.
Общее количество их не поддается исчислению. К тому же толком не понятно, начиная с какого размера космическую глыбу-бродягу следует «произвести в почетное звание» астерои
94
— Ближайшие окрестности —
да. Иногда СМИ сообщают, что мимо Земли пролетел астероид поперечником, скажем, 50 м. Если столь малое тело (вполне способное наделать бед при падении на какой-нибудь населенный пункт) считать астероидом, то тогда астероидов в Солнечной системе миллионы и миллионы!
Еще меньших тел — миллиарды.
Весной в южных широтах вскоре после вечерних сумерек иногда виден так называемый зодиакальный свет — туманный светящийся конус, наклонно поднимающийся над западным горизонтом. Такое же явление наблюдается осенью перед рассветом на востоке. Ось конуса проходит по зодиакальным созвездиям — отсюда и название. Поверхностная яркость свечения невелика, но и не чересчур мала — сопоставима с яркостью Млечного Пути. Чем ближе к экватору, тем ярче зодиакальный свет и тем вертикальнее «высовывается» из-за горизонта конус. Иногда при очень темном небе можно видеть, как «ночной» и «утренний» конусы сливаются в единую полосу, протянувшуюся по небу; изредка видно противосияние — более яркое «вздутие» светящейся полосы в точке небосвода, противоположной Солнцу. Но в чем физическая природа зодиакального света?
Сама его «геометрия» дает ответ: это отражение солнечного света от бесчисленного множества каких-то тел, концентрирующихся к эклиптике. Спектр зодиакального света оказался тождествен спектру Солнца, а это значит, что имеет место отражение солнечного света от достаточно крупных частиц (пылинок и крупнее), а не рассеяние его молекулами газа. Природа противосияния также вполне понятна: частицы, расположенные дальше от Солнца, чем Земля, отражают свет всей поверхностью, подобно Луне в полнолуние. Ведь полная луна ярче ущербной, не так ли?
Общая масса отражающих частиц невелика, зато площадь отражения огромна; она-то и дает то, что мы называем зодиакальным светом. Нет никаких сомнений в том, что эти твердые частицы размером от булыжников до пылинок — такие же обломки Древних планетоидов, как большинство астероидов.
95
Особняком стоят «кентавры» — группа астероидов, расположенных между орбитами Сатурна и Урана. Свое название они получили от первого из них — Хирона. Так звали мудрого кентавра, учителя Ахиллеса. Уже известно более 30 «кентавров», что дает основания говорить о втором поясе астероидов. До прямого изучения «кентавров» дело пока не дошло, а наблюдательная астрономия мало что может сказать об их физической природе — очень уж далеки и малы эти тела. По-видимому, они состоят из силикатов и льдов.
Но вернемся к Главному поясу астероидов. Вообще говоря, астероидная астрономия — занятие не столько наблюдательное, сколько вычислительное, связанное не только с расчетом орбит новых астероидов, но и с уточнением орбит старых, давным- давно открытых малых планет. Сплошь и рядом орбиты астероидов испытывают гравитационные возмущения со стороны планет-гигантов, в первую очередь Юпитера. Для небольших астероидов, близко подходящих к Солнцу, заметен любопытный эффект Ярковского. Суть его в том, что нагретая солнцем сторона крохотной планетки после поворота (астероид-то вращается) излучает тепловые фотоны вперед или назад по ходу движения астероида, обеспечивая ему тем самым тормозной или, соответственно, разгонный импульс. Забавный случай «фотонного привода», столь любимого фантастами, но реализованного самой природой!
Первой малой планетой, сфотографированной с близкого расстояния, стал астероид 951 Гаспра (рис. и), мимо которого 29 октября 1991 года на расстоянии 16 тыс. км прошел зонд «Галилео», направляющийся к Юпитеру. Были получены фотографии с разрешением бо-юо м. Как видно на фото, Гаспра является неправильным телом наибольшим поперечником около 16 км, испещренным оспинами мелких кратеров различных размеров (самый крупный — 1,7 км). Он принадлежит к S-типу, т. е. состоит из силикатов, в данном случае преимущественно оливина. Любопытна сглаженная в целом форма астероида — заведомого обломка более крупного тела. Таковы же
96
впоследствии оказались и другие исследованные космическими аппаратами астероиды. Возможное объяснение этого феномена — периодические столкновения на малой относительной скорости с другими астероидами Главного пояса, приведшие к «шлифовке» поверхности. Трудно сказать, как часто происходят (или происходили в прошлом) подобные столкновения, но факт сглаженности налицо, а Природа располагает временем...
Затем настала очередь Иды (243), мимо которой 28 августа *993 года прошел тот же неутомимый «Галилео». Этот астероид размером 58 х 23 км преподнес сюрприз: у него оказался
97
а стер о ид- спутн и к Дактиль размером 1,5 км (рис. 12). Строго говоря, еще в 1978 году косвенно был открыт спутник астероида Геркулина (532), а колебания блеска некоторых астероидов напоминают колебания блеска двойных звезд, что может говорить
о возможном наличии спутников. Но до миссии «Галилео» Ида ни в чем подобном не подозревалась...
Попутно заметим, что наблюдения последних лет показали: двойственность среди астероидов неожиданно (опять неожиданно!) оказалась не таким уж редким явлением. Выяснилось, например, что небольшие спутники имеют астероиды Сильвия (87) и Камилла (107). Найдены и контактно-двойные астероиды, т. е. космические тела, попросту лежащие друг на друге. Происхождение таких пар остается еще во многом неясным.
Настоящий триумф ждал исследователей после мягкой посадки космического зонда NEAR на астероид Эрос (433). Последний и был главной целью зонда, хотя по пути был сфотографирован
98
астероид Матильда, отличающийся аномально низкой плотностью. Поначалу, правда, из-за сбоя в работе системы ориентации аппарат разминулся с Эросом на расстоянии более 3000 км, и уже казалось, что миссия NEAR завершилась малой удачей. Однако вскоре было найдено решение: использовать часть топлива, предназначенного для маневров около астероида, для того чтобы вновь, спустя 13 месяцев, вывести зонд к Эросу. Маневр увенчался успехом, и 14 февраля 2000 года NEAR вышел на орбиту вокруг астероида.
Зонд передал на Землю выдающийся объем данных (в ю раз больше запланированного). Отчасти это было следствием дерзкого, почти авантюрного решения: потратить остатки топлива на попытку посадить на Эрос зонд, абсолютно не предназначенный для посадки!
Профессионализм плюс везение сделали свое дело: 12 февраля 2001 года NEAR и Эрос соприкоснулись на скорости около 1,5 м/с, чтобы более не разлучаться. Аппарат остался цел, и его гамма-спектрометр собирал данные о составе грунта прямо с поверхности, что на порядок точнее, чем с орбиты. Кроме того, медленно опускающийся на поверхность Эроса зонд делал снимки с разных высот — последний из них был сделан с высоты 120 м. Посадка затевалась, собственно, ради получения снимков высокого разрешения (рис. 13), а выдержит ли аппарат — это уж как повезет...
Повезло. Хотя давно замечено: везет в основном тем, кто хорошо подготовлен.
Эрос — тело сложной формы размером 33 х 13 х 13 км и опять- таки гладкое, а не угловатое. Больше всего удивляет огромное количество камней и глыб, разбросанных по поверхности Эроса и никак не связанных с кратерами. Странен дефицит мелких кратеров. Удивительны образования, названные «прудами», — плоские участки на дне кратеров, образованные реголитом. «Пруды» не просто гладки, но и чрезвычайно горизонтальны (понятно, по отношению к вектору силы тяжести в данном месте). Возникает впечатление, что реголит Эроса ведет себя подобно жидкости.
99
— Часть II —
Кто бы мог подумать, что текучесть реголита, столь красочно описанная в «Лунной пыли» Артура Кларка, проявится на небольшом астероиде! А еще Эрос — второй после Гаспры астероид, у которого было обнаружено магнитное поле.