Вселенная. Вопросов больше, чем ответов — страница 23 из 72

иды — правильные перемен­ные звезды, причем наблюдается довольно четкая зависимость между абсолютной светимостью цефеиды и периодом ее пульса­ций. Выяснить период ничего не стоит, а уж из него и из относи­тельной светимости цефеиды очень просто найти расстояние до нее — разумеется, с той точностью, с которой выполняется зави­симость «светимость-период».

Стало быть, если в каком-то звездном скоплении есть хотя бы одна цефеида, мы можем легко найти расстояние до нее, а зна­чит, для любой звезды этого скопления. Размерами скопления приходится пренебречь, что в большинстве случаев оправдано.

Но! Цефеиды встречаются нечасто, это сравнительно корот­кая стадия жизни массивных звезд, и далеко не всякое скопле­ние содержит цефеиды. И как быть со звездами, не входящими в скопления?

К счастью, и в радиусе 100-200 пк от Солнца находится доста­точное количество звезд, чтобы на основе их изучения пытаться строить какие-то закономерности.

Прежде всего: влияет ли масса звезды на ее температуру и, следовательно, на спектральный класс? Этот вопрос был, по­жалуй, главным для нарождающейся астрофизики XIX века. Из самых общих соображений следовало: да, влияет. Но как это проверить? Ведь надежного метода определения массы одиноч­ной звезды не существовало, как и не существует до сих пор.

Что осталось астрономам? Во-первых, молчаливо предполо­жить, что звезды одного спектрального класса и равной светимо­

134

сти имеют и равные массы. Во-вторых, присмотреться к двойным звездам (особенно удобны затменные переменные) и по третье­му закону Кеплера вычислить сумму их масс. Если также удается определить орбиту каждого компонента двойной системы отно­сительно общего центра масс, то можно вычислить и массу каж­дого компонента в отдельности.

Итак, проделав весьма громоздкую работу по определению звездных характеристик, можно построить зависимости «масса- светимость» (А.С. Эддингтон выполнил эту работу чисто теоре­тически, после чего его выводы были подтверждены на наблю­дательном материале) и «спектральный класс-масса». Но, как ни странно, куда более наглядной оказалась диаграмма «спектр- светимость», вообще не требующая знания массы звезды!

Вид этой диаграммы, более известной под названием диа­граммы Герцшпрунга-Рессела, приведен на рис 16. Каждой точ­ке на диаграмме соответствует звезда. Что в этой диаграмме бро­сается в глаза?

В первую очередь — наличие ясно видимой главной после­довательности, куда входит и наше Солнце с его спектральным классом G2V. «V» в данном случае не латинская буква, а римская цифра 5. Дело в том, что на диаграмме Герцшпрунга-Рессела на­считывается несколько последовательностей (рис. 17), и главная последовательность имеет условный номер V. Номер 1а присвоен последовательности ярких сверхгигантов, lb — слабых сверхги­гантов, II — ярких гигантов, III — слабых гигантов, IV — субгиган­тов, VI — субкарликов, и, наконец, последовательность VII носит название последовательности белых карликов. Сложно?

Не очень. Первый же беглый взгляд на диаграмму Герц­шпрунга-Рессела говорит нам о том, что главная последователь­ность «населена» гораздо гуще остальных. Из этого факта сле­дует совершенно правильный вывод, что место «нормальной» звезды — именно на главной последовательности, или, во всяком случае, звезда проводит на ней значительную часть своей жизни. Следовательно, разумно разобраться сперва с главной последо­вательностью, а потом уже переходить ко всем прочим.

135

— Часть III —

Кстати. Нравится нам это или нет, но астрономы называют главную последовательность также последовательностью кар­ликов. Многим неприятно сознавать, что наше Солнце отнесено к карликам, но как быть со звездами классов О и В, светящими подчас в сотни и тысячи раз ярче Солнца и притом находящими­ся на главной последовательности? Сириус и Вега — тоже кар­лики?

136

— Мир звезд —

Увы, да. Здесь таится определенная терминологическая пута­ница. Чтобы избежать ее, мы будем называть гигантами лишь те звезды, которые на диаграмме лежат правее и выше главной по­следовательности. При этом ярчайшие звезды главной последо­вательности могут даже превосходить их светимостью. «Не все то золото, что блестит», — говорит пословица. Вывернув ее наизнан­ку, скажем: звезда-карлик необязательно тускла и невзрачна.

Логичный с виду, но на сей раз абсолютно неверный вывод астрофизиков прошлого состоял в убеждении: эволюциониру­ющая звезда (а то, что звезды эволюционируют, безвозвратно теряя энергию на излучение, было совершенно очевидно) посте­пенно перемещается по диаграмме Герцшпрунга-Рессела слева направо, т. е. мало-помалу охлаждаясь, перебирается из одного спектрального класса в другой и теряет светимость. Еще и сейчас спектральные классы О, В, А называют иногда «ранними», a G, К, М — «поздними». Пусть это не вводит вас в заблуждение. Не имеет значения, как назвать, — важно, что под этим подразумевается.

Развитие астрофизики развеяло эти наивные представления. Действительность оказалась гораздо сложнее, но и интереснее. Однако об этом ниже.

137

Вопрос давний и не праздный. В конце концов, мы кровно заинтересованы в том, чтобы наше Солнце и впредь продолжа­ло светить с прежней интенсивностью, не позволяя себе ни че­ресчур ярких вспышек, ни, боже упаси, угасания. От ровного и постоянного излучения нашей главной «лампочки» и «печки» зависит существование земной биосферы, а значит, и существо­вание человечества. Умозрительно было понятно, что Солнце светит более или менее ровно по крайней мере около 7 тыс. лет (возраст Вселенной согласно Библии, если понимать ее букваль­но), а значит, за его свечение никак не могут отвечать химиче­ские реакции горения (например, каменного угля), поскольку угольное Солнце при наблюдаемом потоке излучения от него прогорело бы гораздо раньше. Мысль о том, что кто-то непре­рывно подбрасывает в Солнце топливо и вдувает кислород для его сгорания, уже триста лет назад не казалась ученым заслужи­вающей внимания.

В середине XIX века великому Гельмгольцу удалось, каза­лось, предложить приемлемое объяснение долговременной и более-менее постоянной светимости Солнца. Он предпо­ложил, что Солнце постоянно сжимается. За счет сжатия по­тенциальная энергия вещества высвобождается в виде тепла. Расчеты показали, что для объяснения наблюдаемой светимо­сти Солнца оно должно сжиматься примерно на 150 м в год — величина столь малая, что ее нельзя измерить ни во времена Гельмгольца, ни сейчас. Увы, гипотеза не прошла. Расчеты по­казали, что всего-то 18 млн лет назад диаметр Солнца должен был просто-напросто превышать диаметр земной орбиты. Это не лезло ни в какие ворота, и не из-за того, что подобных пух­лых звезд не существует (как раз существуют!), а потому, что накопленный к середине XIX столетия геологический матери­ал прямо указывал: возраст Земли составляет по меньшей мере

138

сотни миллионов лет. Предположить, что Земля намного стар­ше Солнца, значило вступить в область беспочвенных фанта­зий. Куда логичнее было продолжать поиски иных энергетиче­ских источников Солнца.

В 1905 году, когда Эйнштейн вывел свою знаменитую фор­мулу, показав эквивалентность массы и энергии, источник был наконец найден. Любой школьник сегодня знает (во всяком слу­чае должен знать), что таковым источником являются термоя­дерные реакции в недрах Солнца, в результате которых какая- то доля его массы превращается в излучение. Элементарный расчет показывает, что Солнце ежесекундно теряет в виде из­лучения 4600 т вещества — масса солидного товарного поезда. Однако по сравнению с массой Солнца это ничтожно мало, и нам не следует бояться ни того, что Солнце вскоре погаснет, ни того, что благодаря уменьшению его массы орбита Земли удлинит­ся настолько, что на Земле наступит вечный холод. Напротив, как бы нам не стало слишком жарко. Светимость Солнца очень медленно, но верно увеличивается, и наступят времена, когда Земля перестанет быть подходящей для белковой жизни плане­той. Радует лишь то, что эти времена наступят еще ох как неско­ро. Но отдаленным потомкам человека (если они у него будут) когда-нибудь неминуемо придется всерьез задуматься: не сме­нить ли место жительства?

Итак. С энергоисточником Солнца ученые вроде разобра­лись — это ядерные реакции. Оставалось непонятным — какие именно? На начало XX века был известен лишь один тип ядер- ных реакций — радиоактивность. Она и была первым делом предложена — и мгновенно отвергнута. Ведь радиоактивность — процесс спонтанный, не зависящий ни от плотности вещества, ни от его температуры. Между тем было уже ясно, что Солнце, как и любая звезда, обладает «отрицательной обратной связью», т. е. способно к быстрому восстановлению своей структуры и сво­их характеристик после мелких случайных нарушений. Нет, ра­диоактивность решительно не годилась. Термоядерные реакции синтеза — иное дело.

139

Главным образом это реакции превращения водорода в гелий. Их две — протон-протонная реакция и углеродно-азотный цикл, называемый также циклом Бете-Вайцзекера. Рассмотрим обе.

Суть протон-протонной реакции состоит в последовательном «слипании» протонов с образованием сначала дейтерия (при этом высвобождаются позитрон и нейтрино), а затем легкого изотопа гелия 3Не с испусканием гамма-кванта. После чего два ядра 3Не реагируют между собой с образованием ядра 4Не и двух протонов. Последний этап может проходить и иначе, если ядро 3Не прореагирует с ядром 4Не, а затем образовавшееся ядро бе­риллия 7Ве превратится, захватив протон, в ядро неустойчиво­го изотопа бора 8В, распадающегося на два ядра 4Не. Возможны (и происходят в действительности) и иные варианты послед­него этапа данной реакции, но суть ее остается неизменной: из четырех ядер водорода (протонов) получается одно ядро гелия (альфа-частица). При этом выделяется энергия 26,2 МэВ, а де­фект массы составляет около 0,7%. Часть энергии уносится ней­трино, остальное идет на поддержание температуры звездного ядра, постоянно норовящего остыть за счет энерговыделения звезды.