А что же в более глубоких слоях? Там газ горяч, полностью ионизован и прозрачен для излучения. Можно считать, что Солнце состоит из трех слоев, и радиус каждого слоя составляет примерно треть радиуса Солнца.
В центральной трети — зона энерговыделения. Там идутядер- ные реакции, а транспортировка энергии вовне осуществляется лучистым переносом.
Во втором, среднем, слое температура вещества уже мала для ядерных реакций, но еще достаточна для лучистого переноса. Из этого не следует, что там, как и в центральной зоне, нет перемешивания вещества, — очень может быть, что перемешивание в какой-то мере происходит, однако не оно ответственно за транспортировку энергии.
Наконец, внешний слой, составляющий треть солнечного радиуса, — конвективный. Наружные слои Солнца буквально бурлят, что наблюдается телескопически в виде грануляции. Гранулы на поверхности Солнца есть не что иное, как конвективные ячейки. Выйдя на поверхность, нагретый газ наконец-то избавляется от излишков энергии, излучая кванты в пространство, после чего вновь «ныряет» в глубину.
В менее ярких и более холодных звездах главной последовательности внешняя конвективная зона занимает гораздо больший (относительно) объем. Это и понятно: чем менег нагреты недра звезды, тем уже область лучистого переноса и шире конвективная зона. Зато в массивных и горячих О- и В-звездах
146
главной последовательности картина в точности обратная. Энерговыделение там столь огромно, что лучистый перенос уже не справляется с транспортировкой энергии в глубинных слоях звезды, что приводит к образованию конвективного ядра. Зато внешние области такой звезды достаточно горячи, чтобы обеспечить перенос энергии преимущественно излучением.
Итак, не только светимость, но и строение звезды главной последовательности зависят от ее массы. Ниже мы увидим, что сценарий жизни и особенно смерти звезды также зависит в первую очередь от ее массы. Какие же вообще массы бывают у звезд?
Верхний теоретический предел — около юо масс Солнца. Звезды столь большой массы находятся на пределе устойчивости, их колоссальное собственное излучение готово разорвать их. Характерный пример — звезда Эта Киля, погруженная в туманность, состоящую из бывшего звездного вещества, выброшенного звездой при вспышке. Переменная-сверхгигант Р Лебедя, имеющая светимость, в миллион раз превышающую солнечную, теоретически должна иметь массу не менее 80-100 масс Солнца. Эта звезда ежегодно теряет в виде звездного ветра ю4 масс Солнца.
Некоторое время астрофизиков чрезвычайно интриговал объект Ri36a, находящийся в Туманности Тарантул в Большом Магеллановом Облаке. Выглядя звездой, он имел светимость в юо млн солнц, а его масса оценивалась в 4000 солнечных, что резко противоречило теории. Но теория устояла. Метод спекл- интерферометрии, а также снимки, сделанные орбитальным телескопом «Хаббл», позволили выяснить природу объекта — это оказалась не одиночная звезда и даже не кратная система, а тесное скопление минимум из 70 звезд. Похоже, что юо масс Солнца — это практический предел массы звезды, превышать который звезде «не рекомендуется», если она хочет остаться звездой.
А что на другом полюсе — наименьших звездных масс? Мы знаем, что температура в центре звезды главной последовательности определяется ее массой. Если масса звезды мала, то мала и температура. Ее может не хватить для протон-протонной реакции, скорость которой, как мы помним, зависит от темпера
147
туры в 5-й степени. Если масса звезды менее 0,075 солнечной (предел Кумара), то температура в ней недостаточна для протон- протонной реакции. Но откуда же сжимающееся протозвездное облако может «знать», что его масса недостаточна для формирования полноценной звезды?
И действительно, такие звезды существуют. Они очень красны, очень тусклы и называются коричневыми карликами. Их светимость обеспечивается очень медленным сжатием — как видим, теория Гельмгольца, оказавшаяся непригодной для Солнца, вполне применима к коричневым карликам. Кроме того, в недрах коричневых карликов на раннем этапе их существования могут идти реакции на легких ядрах (прежде всего дейтерия) с низким кулоновским барьером, но этих ядер мало, и они быстро «выгорают». Основной источник светимости коричневых карликов — все же сжатие.
Теоретически предсказанные довольно давно, коричневые карлики были открыты лишь в 1989 году после уточнения орбитального движения компонент двойной звезды Вольф 424, одной из ближайших к Солнцу звезд. Выяснилось, что карликовые компоненты этой двойной звездной системы имеют массы 0,059 и 0,051 солнечной, что меньше предела Кумара. Сейчас астрономам известно множество коричневых карликов; в качестве последних отождествлены некоторые невидимые спутники звезд, а что до экзопланет (юпитероподобных объектов, обращающихся вокруг близких и не очень близких звезд), то за ними идет настоящая — и успешная — охота. В созвездии Ориона открыты также большие газовые планеты, не являющиеся спутниками звезд.
Возникает закономерный вопрос: а где вообще проходит граница между звездой и планетой? Ведь коричневые карлики все-таки звезды, поскольку самосветящееся тело логично считать звездой, каковы бы ни были причины его свечения. С другой стороны, в атмосферах коричневых карликов предполагаются атмосферные явления, например, там могут идти дожди из расплавленных металлов, что совсем не характерно для нормальных звезд. Четкой границы тут нет, астрономы лишь договорились провести ниж
148
нюю границу масс коричневых карликов по уровню 0,013 солнечной массы. Таким образом, Юпитер очень сильно — в 13 раз — недобрал массы для того, чтобы быть переведенным в ранг звезды, пусть даже такой неполноценной, как коричневый карлик.
Для земных астрономов-наблюдателей как раз очень хорошо, что Юпитер маломассивен для звезды. Им и без того мешает яркая Луна, а если бы еще Юпитер светил на несколько звездных величин ярче, количество темных ночей резко уменьшилось бы.
Между прочим, средняя масса звезд в окрестностях Солнца равна 0,41 солнечной массы. Такая «усредненная» звезда являлась бы оранжевым карликом класса К и светила бы в 5-10 раз слабее Солнца. Разумеется, мы говорим о звезде, находящейся на главной последовательности диаграммы Герцшпрунга-Рессела, и это весьма существенная оговорка. Светимости звезд равной массы, но разных классов отличаются не в разы — на порядки.
Первым открытым астрономами белым карликом явился спутник Сириуса — Сириус В. Открыть его удалось потому, что собственное движение Сириуса оказалось не прямым, а заметно волнообразным с периодом около 50 лет. Из этого следовал вывод о наличии массивного невидимого спутника, разглядеть который в телескоп удалось только в 1862 году. Сириус В также оказался звездой, причем не очень слабой, 8-й звездной величины. Лишь яркий блеск Сириуса А мешал наблюдателям заметить спутник раньше.
Итак, элементы орбит компонентов двойной системы стали известны, светимости тоже, и уже ничто не мешало получить полный «портрет» обеих звезд. А дальше начались чудеса на грани фантастики. Выяснилось, что Сириус В при крайне скромном для звезды диаметре, лишь втрое превышающем диаметр земного шара, но при массе порядка солнечной неизбежно должен иметь чудовищную среднюю плотность — около 30 кг/см3. Сейчас такой плотностью не удивишь даже широкую публику, не то что астрономов, но в те времена столь громадные величины поражали воображение, поскольку находились в резком противоречии с бытовым опытом всякого человека. Нужно было постараться, чтобы представить себе силача а-ля Иван Поддубный,
149
напрасно старающегося приподнять спичечную коробку, наполненную веществом с Сириуса В.
Впоследствии было найдено немало подобных объектов, названных белыми карликами. Они действительно по большей части относятся к спектральному классу А, хотя есть исключения. Но характеризует все эти звезды прежде всего громадная плотность вещества в них. Так, звезда Вольфа, известная также под обозначением N457, втрое меньше Земли, а звезда Лейтена — вдесятеро. И это при звездных массах! Плотность Сириуса В далеко не рекордная.
Несмотря на огромную плотность, вещество белых карликов — газ. Это может показаться странным, ведь наш земной опыт говорит нам, что газы легче жидкостей и твердых тел. Однако вспомним, что такое твердое тело. В нем ядра атомов находятся на определенном расстоянии друг от друга, определяемом радиусами внешних электронных оболочек. Последние довольно велики по сравнению с размерами атомных ядер. Отсюда следует, что полностью ионизованные атомы газа, т. е. ядра, можно «упаковать» гораздо плотнее, и вещество при этом все равно останется газом. Точнее, плазмой, но ведь плазма — это ионизованный газ.
Белые карлики состоят из гелия и более тяжелых элементов. Водорода в них нет, если не считать тонкую поверхностную оболочку. Из этого следует, что весь водород в таких звездах выгорел в результате ядерных реакций, ибо невозможно предположить, чтобы газовая туманность, давшая начало звезде, была исходно лишена водорода. Стало быть, белые карлики — весьма старые объекты, у которых «самое интересное» уже позади.
Более того, это типичные объекты. Разумеется, лишь малую часть из них можно наблюдать средствами современной астрономии, но несколько таких звезд находятся в ближайших окрестностях Солнца, а мы не имеем оснований утверждать, что окрестности Солнца принципиально отличаются от других областей Галактики. Следовательно, количество белых карликов в Галактике исчисляется миллиардами. Возможно, 10% всех звезд Галактики являются белыми карликами.
150
Как поведет себя звезда после выгорания ядерного топлива? Поскольку энерговыделение в ее центральных областях прекратится, давление света уже не будет компенсировать силу тяготения, стремящуюся сжать звезду. И действительно, звезда начнет сжиматься до тех пор, пока гравитация не будет уравновешена каким- нибудь новым фактором и система вновь не станет устойчивой.