Вселенная. Вопросов больше, чем ответов — страница 25 из 72

А что же в более глубоких слоях? Там газ горяч, полностью ио­низован и прозрачен для излучения. Можно считать, что Солнце состоит из трех слоев, и радиус каждого слоя составляет пример­но треть радиуса Солнца.

В центральной трети — зона энерговыделения. Там идутядер- ные реакции, а транспортировка энергии вовне осуществляется лучистым переносом.

Во втором, среднем, слое температура вещества уже мала для ядерных реакций, но еще достаточна для лучистого переноса. Из этого не следует, что там, как и в центральной зоне, нет переме­шивания вещества, — очень может быть, что перемешивание в какой-то мере происходит, однако не оно ответственно за транс­портировку энергии.

Наконец, внешний слой, составляющий треть солнечного радиуса, — конвективный. Наружные слои Солнца буквально бурлят, что наблюдается телескопически в виде грануляции. Гранулы на поверхности Солнца есть не что иное, как конвектив­ные ячейки. Выйдя на поверхность, нагретый газ наконец-то из­бавляется от излишков энергии, излучая кванты в пространство, после чего вновь «ныряет» в глубину.

В менее ярких и более холодных звездах главной последо­вательности внешняя конвективная зона занимает гораздо больший (относительно) объем. Это и понятно: чем менег на­греты недра звезды, тем уже область лучистого переноса и шире конвективная зона. Зато в массивных и горячих О- и В-звездах

146

главной последовательности картина в точности обратная. Энерговыделение там столь огромно, что лучистый перенос уже не справляется с транспортировкой энергии в глубинных слоях звезды, что приводит к образованию конвективного ядра. Зато внешние области такой звезды достаточно горячи, чтобы обе­спечить перенос энергии преимущественно излучением.

Итак, не только светимость, но и строение звезды главной по­следовательности зависят от ее массы. Ниже мы увидим, что сце­нарий жизни и особенно смерти звезды также зависит в первую очередь от ее массы. Какие же вообще массы бывают у звезд?

Верхний теоретический предел — около юо масс Солнца. Звезды столь большой массы находятся на пределе устойчиво­сти, их колоссальное собственное излучение готово разорвать их. Характерный пример — звезда Эта Киля, погруженная в туман­ность, состоящую из бывшего звездного вещества, выброшенно­го звездой при вспышке. Переменная-сверхгигант Р Лебедя, име­ющая светимость, в миллион раз превышающую солнечную, тео­ретически должна иметь массу не менее 80-100 масс Солнца. Эта звезда ежегодно теряет в виде звездного ветра ю4 масс Солнца.

Некоторое время астрофизиков чрезвычайно интриговал объект Ri36a, находящийся в Туманности Тарантул в Большом Магеллановом Облаке. Выглядя звездой, он имел светимость в юо млн солнц, а его масса оценивалась в 4000 солнечных, что резко противоречило теории. Но теория устояла. Метод спекл- интерферометрии, а также снимки, сделанные орбитальным теле­скопом «Хаббл», позволили выяснить природу объекта — это ока­залась не одиночная звезда и даже не кратная система, а тесное скопление минимум из 70 звезд. Похоже, что юо масс Солнца — это практический предел массы звезды, превышать который звез­де «не рекомендуется», если она хочет остаться звездой.

А что на другом полюсе — наименьших звездных масс? Мы знаем, что температура в центре звезды главной последователь­ности определяется ее массой. Если масса звезды мала, то мала и температура. Ее может не хватить для протон-протонной ре­акции, скорость которой, как мы помним, зависит от темпера­

147

туры в 5-й степени. Если масса звезды менее 0,075 солнечной (предел Кумара), то температура в ней недостаточна для протон- протонной реакции. Но откуда же сжимающееся протозвездное облако может «знать», что его масса недостаточна для формиро­вания полноценной звезды?

И действительно, такие звезды существуют. Они очень крас­ны, очень тусклы и называются коричневыми карликами. Их светимость обеспечивается очень медленным сжатием — как ви­дим, теория Гельмгольца, оказавшаяся непригодной для Солнца, вполне применима к коричневым карликам. Кроме того, в не­драх коричневых карликов на раннем этапе их существования могут идти реакции на легких ядрах (прежде всего дейтерия) с низким кулоновским барьером, но этих ядер мало, и они быстро «выгорают». Основной источник светимости коричневых карли­ков — все же сжатие.

Теоретически предсказанные довольно давно, коричневые карлики были открыты лишь в 1989 году после уточнения орби­тального движения компонент двойной звезды Вольф 424, одной из ближайших к Солнцу звезд. Выяснилось, что карликовые компоненты этой двойной звездной системы имеют массы 0,059 и 0,051 солнечной, что меньше предела Кумара. Сейчас астроно­мам известно множество коричневых карликов; в качестве по­следних отождествлены некоторые невидимые спутники звезд, а что до экзопланет (юпитероподобных объектов, обращающихся вокруг близких и не очень близких звезд), то за ними идет насто­ящая — и успешная — охота. В созвездии Ориона открыты также большие газовые планеты, не являющиеся спутниками звезд.

Возникает закономерный вопрос: а где вообще проходит грани­ца между звездой и планетой? Ведь коричневые карлики все-таки звезды, поскольку самосветящееся тело логично считать звездой, каковы бы ни были причины его свечения. С другой стороны, в атмосферах коричневых карликов предполагаются атмосферные явления, например, там могут идти дожди из расплавленных ме­таллов, что совсем не характерно для нормальных звезд. Четкой границы тут нет, астрономы лишь договорились провести ниж­

148

нюю границу масс коричневых карликов по уровню 0,013 солнеч­ной массы. Таким образом, Юпитер очень сильно — в 13 раз — не­добрал массы для того, чтобы быть переведенным в ранг звезды, пусть даже такой неполноценной, как коричневый карлик.

Для земных астрономов-наблюдателей как раз очень хорошо, что Юпитер маломассивен для звезды. Им и без того мешает яр­кая Луна, а если бы еще Юпитер светил на несколько звездных величин ярче, количество темных ночей резко уменьшилось бы.

Между прочим, средняя масса звезд в окрестностях Солнца равна 0,41 солнечной массы. Такая «усредненная» звезда явля­лась бы оранжевым карликом класса К и светила бы в 5-10 раз слабее Солнца. Разумеется, мы говорим о звезде, находящейся на главной последовательности диаграммы Герцшпрунга-Рессела, и это весьма существенная оговорка. Светимости звезд равной массы, но разных классов отличаются не в разы — на порядки.

Первым открытым астрономами белым карликом явился спут­ник Сириуса — Сириус В. Открыть его удалось потому, что соб­ственное движение Сириуса оказалось не прямым, а заметно вол­нообразным с периодом около 50 лет. Из этого следовал вывод о наличии массивного невидимого спутника, разглядеть который в телескоп удалось только в 1862 году. Сириус В также оказался звез­дой, причем не очень слабой, 8-й звездной величины. Лишь яркий блеск Сириуса А мешал наблюдателям заметить спутник раньше.

Итак, элементы орбит компонентов двойной системы стали известны, светимости тоже, и уже ничто не мешало получить полный «портрет» обеих звезд. А дальше начались чудеса на грани фантастики. Выяснилось, что Сириус В при крайне скром­ном для звезды диаметре, лишь втрое превышающем диаметр земного шара, но при массе порядка солнечной неизбежно дол­жен иметь чудовищную среднюю плотность — около 30 кг/см3. Сейчас такой плотностью не удивишь даже широкую публику, не то что астрономов, но в те времена столь громадные величины поражали воображение, поскольку находились в резком проти­воречии с бытовым опытом всякого человека. Нужно было по­стараться, чтобы представить себе силача а-ля Иван Поддубный,

149

напрасно старающегося приподнять спичечную коробку, напол­ненную веществом с Сириуса В.

Впоследствии было найдено немало подобных объектов, на­званных белыми карликами. Они действительно по большей ча­сти относятся к спектральному классу А, хотя есть исключения. Но характеризует все эти звезды прежде всего громадная плот­ность вещества в них. Так, звезда Вольфа, известная также под обозначением N457, втрое меньше Земли, а звезда Лейтена — вдесятеро. И это при звездных массах! Плотность Сириуса В да­леко не рекордная.

Несмотря на огромную плотность, вещество белых карли­ков — газ. Это может показаться странным, ведь наш земной опыт говорит нам, что газы легче жидкостей и твердых тел. Однако вспомним, что такое твердое тело. В нем ядра атомов находятся на определенном расстоянии друг от друга, определяемом радиу­сами внешних электронных оболочек. Последние довольно вели­ки по сравнению с размерами атомных ядер. Отсюда следует, что полностью ионизованные атомы газа, т. е. ядра, можно «упако­вать» гораздо плотнее, и вещество при этом все равно останется газом. Точнее, плазмой, но ведь плазма — это ионизованный газ.

Белые карлики состоят из гелия и более тяжелых элементов. Водорода в них нет, если не считать тонкую поверхностную обо­лочку. Из этого следует, что весь водород в таких звездах выгорел в результате ядерных реакций, ибо невозможно предположить, чтобы газовая туманность, давшая начало звезде, была исходно лишена водорода. Стало быть, белые карлики — весьма старые объекты, у которых «самое интересное» уже позади.

Более того, это типичные объекты. Разумеется, лишь ма­лую часть из них можно наблюдать средствами современной астрономии, но несколько таких звезд находятся в ближайших окрестностях Солнца, а мы не имеем оснований утверждать, что окрестности Солнца принципиально отличаются от других об­ластей Галактики. Следовательно, количество белых карликов в Галактике исчисляется миллиардами. Возможно, 10% всех звезд Галактики являются белыми карликами.

150

Как поведет себя звезда после выгорания ядерного топлива? Поскольку энерговыделение в ее центральных областях прекра­тится, давление света уже не будет компенсировать силу тяготения, стремящуюся сжать звезду. И действительно, звезда начнет сжи­маться до тех пор, пока гравитация не будет уравновешена каким- нибудь новым фактором и система вновь не станет устойчивой.