А что же рефракторы? Наибольший из них имеет диаметр объектива 102 см. «Звездный час» рефракторов пришелся на конец XIX века, после чего они «сдали» нишу крупнейших
22
— Чем и как изучают Вселенную —
инструментов рефлекторам. Уж очень рефракторы длинны! Пулковский рефрактор при 75-см объективе имеет длину около 13 м. При объективе диаметром 5 м, вполне рядовом для крупных современных рефлекторов, рефрактор имел бы длину трубы под юо м! Нечего и говорить, что купол для такого телескопа, не говоря уже о монтировке, никогда не будет построен. Кроме того, прогиб стекла под собственным весом превысил бы допустимую величину, а скомпенсировать его оказалось бы технически невозможно.
Кстати о прогибах. Идеальная, с точки зрения астронома, поверхность оптики должна иметь уровень возможных отклонений не более 1/8 длины световой волны (критерий Рэлея). Для волны длиной 555 нм, соответствующей максимальной чувствительности сетчатки человеческого глаза, отклонение реальной оптической поверхности от идеальной не должно превышать 0,07 мкм. Для телескопов, работающих в ультрафиолетовом диапазоне, допуск еще строже. Получить поверхность такой точности само по себе не просто, однако надо еще добиться, чтобы прогиб главного зеркала телескопа под собственным весом укладывался в эту величину. Приходится конструировать схемы его «разгрузки» на множество точек. Даже скромное 150-мм зеркало любительского телескопа для разгрузки на 3 равноудаленные от центра точки должно иметь толщину не менее 20 мм — в противном случае придется использовать разгрузку на 6 или 9 точек. Что уж говорить о многотонных крупных зеркалах! В 6-м 40-т зеркале БТА со временем проявился еще один неприятнейший дефект: изменение фигуры зеркала из-за текучести стекла, которое, как известно, материал аморфный и может «течь», подобно жидкости, особенно под действием больших нагрузок. В крупных телескопах более поздней постройки применяют значительно более легкие и тонкие зеркала, лежащие на подвижных штырях, управляемых компьютером (адаптивная оптика). Самые же крупные телескопы, уже существующие или только проектируемые, нередко имеют составные зеркала по типу пчелиных сот
23
из десятков сравнительно небольших шестиугольных зеркал, причем вся система управляется, естественно, тоже компьютером. Такое техническое решение снимает целый ряд проблем, включая финансовую: дело в том, что стоимость изготовления сплошного зеркала пропорциональна примерно кубу его диаметра...
Нельзя ли, однако, соединить достоинства рефракторов (отсутствие вредных токов воздуха в закрытой трубе) и рефлекторов (большая светосила) в одной оптической системе, а заодно побороться с искажениями света (аберрациями) в оптических системах, вынуждающими ограничивать поле зрения телескопов? Первым эту задачу решил Шмидт, разместивший в центре кривизны главного сферического зеркала диафрагму с корректирующей пластинкой сложной формы. Получилась система с большим полем зрения, светосильная и очень удобная в качестве астрографа (фотографического телескопа). Знаменитый Паломарский атлас неба представляет собой набор фотопластинок, полученных на обсерватории Маунт-Паломар с помощью 124-см телескопа системы Шмидта. Крупнейший из ныне существующих телескопов Шмидта имеет апертуру11,34 м.
В 1941 году Д.Д. Максутов предложил схему менискового телескопа, в котором аберрации главного зеркала компенсируются выпукло-вогнутым стеклом — мениском, и вскоре построил первый телескоп такого рода — Грегори с менисковым корректором. При этом удалось чрезвычайно уменьшить длину инструмента, а качество изображения только возросло. Вносимый мениском хроматизм ничтожен, а прочие аберрации (кома, астигматизм, кривизна поля, дисторсия) скомпенсированы при правильном расчете схемы вполне удовлет
1 То же, что входное отверстие телескопа. В простых системах апертура равна диаметру объектива (линзового у рефракторов и зеркального у рефлекторов); в катадиоптрических системах Шмидта и Максутова апертура равна диаметру корректирующей пластинки и мениска соответственно. — Примеч. авт.
24
— Чем и как изучают Вселенную —
ворительно. Однако более перспективной оказалась система Максутова-Кассегрена. В настоящее время построено очень много телескопов Шмидта и Максутова различных модификаций.
Желание сделать телескоп более технологичным в производстве, с одной стороны, и еще больше уменьшить аберрации — с другой, привело к созданию систем Аргунова, Волосова, Клевцова, Чуриловского, Рихтера-Слефогта и др. Вообще число возможных телескопических систем очень велико, и любой оптик-расчетчик может увековечить свое имя, предложив совершенно новую схему.
Часто в магазинах, торгующих среди прочей оптики телескопа- ми, можно слышать вопрос покупателя: «А каково увеличение этого телескопа?» Нет ничего ошибочнее такого вопроса — по нему торговцы моментально идентифицируют неспециалиста, а дальше уж дело зависит от степени их добросовестности. Вопрос этот прежде всего лишен смысла: ведь увеличение телескопа равно частному от деления фокусного расстояния объектива1 на фокусное расстояние окуляра. Окуляры у телескопов сменные — короткофокусные называются сильными, а длиннофокусные — слабыми окулярами. Смена окуляра меняет увеличение всей оптической системы.
Существует, правда, понятие минимального и максимального полезного увеличения. Минимальное полезное увеличение приблизительно равно апертуре телескопа, выраженной в миллиметрах, деленной на 6. Максимальное полезное увеличение примерно равно апертуре, умноженной на 1,5-2. Следовательно, если вы увидите в продаже телескоп с объективом шо-мм диаметра и надписью «увеличение до 400 крат», не сомневайтесь — вас пытаются обмануть. «Разогнать» увеличение сверх максимального полезного в принципе нетрудно, но смысла в этом нет ни малейшего: масштабы изображения увеличатся, но никаких новых подробностей рассмотреть не удастся.
Какие характеристики оптической системы телескопа следует считать важнейшими? Их две: проницающая способность и предельное разрешение (совсем как у радиоприемника — чувствительность и избирательность). И то и другое определяется апертурой телескопа. Чем больше света соберет объектив телескопа, тем выше будет его чувствительность (именно поэтому наши зрачки в темноте расширяются). Что до разрешающей способности, то любому фотографу известно: если сильно за- диафрагмировать объектив, уменьшив тем самым его апертуру,
1 Или эквивалентного фокусного расстояния для систем Кассегрена
и Грегори. — Примеч. авт.
26
— Чем и как изучают Вселенную —
сразу «полезет зерно». Зависимость разрешающей способности от апертуры здесь очень наглядна.
Итак, чем телескоп крупнее, тем он лучше? Да, но с рядом оговорок. Великолепная оптическая система, установленная на негодной монтировке, превратит телескоп в груду бесполезного металла и стекла. Колоссальное значение имеет место установки крупного инструмента. О световом загрязнении мы уже говорили, но и его отсутствие еще не решает всех проблем.
Атмосфера Земли, благодаря которой мы дышим и существуем, — страшный враг астронома. Она поглощает и рассеивает свет, в ней блуждают турбулентные потоки, портящие изображение. Диск небесного светила (реальный для планеты и фиктивный для звезды) размазывается в некую «медузу», пребывающую в беспрестанном раздражающем колыхании. Серьезные наблюдения в таких условиях невозможны.
Чем крупнее телескоп, тем большие требования предъявляет он к астроклимату. Чтобы выжать из инструмента максимум того, на что он способен, площадку для строительства обсерватории приходится выбирать на высоте по меньшей мере 1500-2000 м над уровнем моря (лучше — больше), причем в таких местах, где атмосферная турбуленция минимальна. Например, плохое решение — построить башню большого телескопа на южном склоне горы, если в данной местности преобладают ветры с севера.
Возможно, это звучит издевательски, но превосходным астроклиматом отличаются центральные районы Антарктиды. На американской антарктической станции Амундсен-Скотг, находящейся на Южном географическом полюсе, имеется телескоп средних размеров — «всего» с полутораметровым зеркалом. К сожалению, он может обозревать лишь южное полушарие неба.
Этого недостатка лишены инструменты, установленные ближе к экватору, например уже упоминавшиеся VLT (Чили) и им, Кека (Мауна-Кеа), 8,2-м японский «Субару» (там же), 9,1-м телескоп им. Хобби-Эберли с составным главным зеркалом (Техас) и др. Некогда крупнейший в мире российский 6-м телескоп БТА теперь, увы, находится во втором десятке среди крупнейших оптических инструментов.
27
Постройка столь крупных наземных инструментов стала альтернативой Космическому телескопу им. Хаббла (рис. 6) с зеркалом 2,4 м. Выведенный на орбиту в 1990 г. и вышедший на полную «мощность» в 1994 году после устранения дефектов, этот инструмент за долгие годы работы вне атмосферы, так мешающей наблюдениям, показал выдающиеся результаты. Правда, и стоимость его, по мнению американцев, оказалась чересчур высока. В настоящее время на замену старичку «Хабблу» готовится космический телескоп им. Джеймса Уэбба с 7-м зеркалом.
А что же на Земле? «Забьет» ли новый космический телескоп наземные инструменты по всем статьям? В этом нет уверенности. Всерьез обсуждается вопрос о постройке в Европе телескопа с 40-м зеркалом — разумеется, составным и адаптивным. И это еще паллиатив — существует проект юо-м телескопа!
4. НЕ ТОЛЬКО ОПТИЧЕСКИЕ
Во время немецкого «воздушного наступления» на Англию британцы, буквально «только что» создавшие и разместившие на юго-восточном побережье новейшие средства обнаружения самолетов противника — радиолокаторы, были озадачены. Каждое утро начиналось с ложной тревоги. В определенном положении приемной антенны экраны показывали сплошную засветку, как будто к Британии приближалась немецкая воздушная армада, чего на самом деле не было. «Виновник» паразитной засветки нашелся скоро — Солнце. То, что видимый свет составляет лишь часть спектра излучения нашего светила, было, разумеется, известно задолго до Второй мировой войны, но знать это в теории и обнаружить на практике — разные вещи.