Похоже, что все-таки «по проекту» было два рукава — просто на современном этапе структура рукавов М31 искажена посторонними возмущениями. На роль «возмутителей спокойствия» лучше всего подходят эллиптические галактики М32 и М110, особенно первая. Маленькая, но яркая М32 находится на периферии М31, от этой эллиптической галактики остались лишь центральные области с высокой звездной плотностью — наружные же части были «ободраны» притяжением более массивной соседки. М31 «без зазрения совести» присвоила себе чужие звезды, зато «не осталась в долгу» и М32, нарушив спиральный узор «обидчика».
Возможно, несколько раньше в непосредственной близости к М31 прошла другая эллиптическая галактика-спутник — М110. Звездообразование в ней прямо указывает на то, что сравнительно недавно эта галактика где-то поживилась газом. Уж не У Туманности ли Андромеды?
В М31 наблюдаются те же типы звездного населения, что и в Млечном Пути. Шаровых скоплений в ней к настоящему времени известно без малого боо. Спиральная структура обрисована почти двумястами звездными ассоциациями, содержащими горячие ОВ-звезды и яркие газовые облака, но все же, если взять усредненную звезду Туманности Андромеды, то она окажется краснее и слабее усредненной звезды нашей Галактики. В М31 очень много звезд — по-видимому, более триллиона про
26l
тив 400 млрд звезд Млечного Пути, но звезды М31 в среднем тусклее.
Помимо близких спутников М32 и М110 у Туманности Андромеды есть два далеких спутника — карликовые эллиптические галактики NGC185 (Езрес) и NGC147 (Е5). Они резко отличаются от «нормальных» эллиптических галактик общей рыхлостью и низкой поверхностной яркостью. NGC185 считается пекулярной из-за прослоек пыли и некоторого количества молодых горячих звезд. Где эта галактика набралась диффузной материи — неясно. На небе обе эти галактики расположены довольно далеко от М31.
Если условную линию, проведенную от М31 к звезде Бета Андромеды, продолжить еще примерно на столько же, мы попадем почти точно в М33 — Туманность Треугольника. Это небольшая спиральная галактика типа Sc, выглядящая на небе как большое пятно низкой поверхностной яркости. Чтобы уверенно обнаружить ее и как следует рассмотреть, полезно вооружить глаз биноклем и дождаться очень темной и очень прозрачной ночи. Она 6-й звездной величины, но ее свет «размазан» по большой площади. Поэтому настоящее представление о ее структуре дает только фотография (рис. 33, цв. вклейка).
В М33 много облаков ионизованного водорода, три из них особенно большие и яркие. Крупнейшее и ярчайшее из них, удостоенное собственного обозначения NGC604, содержит гнездо
0-звезд с температурами порядка 50 тыс. К. Некоторые из них являются звездами Вольфа-Райе (класс W), горячие внешние атмосферы которых «выкипают» в интенсивном поле тепла и излучения. Совершенно ясно, что в этих областях идет активное звездообразование. Ярчайшая звезда в М33 имеет абсолютную величину -9,4, что не абсолютный рекорд для звезды, но все же ни одна из ярких звезд, видимых на нашем небе, не сравнится с ней. Даже Денеб, светящий как 270 тыс. солнц, имеет абсолютную величину всего -8,8.
В 1983 году в ядре М33 был обнаружен рентгеновский источник, похожий на рентгеновские источники, связанные с актив
262
ными ядрами некоторых галактик. Такой же, но в ю раз более слабый источник находится в центре М31, а рентгеновский источник в центре нашей Галактики слабее в ю тыс. раз. Похоже, «центральному монстру» М33 есть что кушать — ведь в галактиках типа Sc больше свободного газа. Как ни странно, этот объект проявляет себя только в рентгене — а ведь газ, падающий в черную дыру, по идее должен излучать на всех диапазонах волн. Разгадку еще предстоит найти.
Расстояние до М33 лишь немногим больше, чем до М31, —
2,5 млн св. лет. Учитывая их близость на небе, можно быть уверенными, что гравитационные узы между ними теснее, чем между любой из этих галактик и Млечным Путем.
Наша Галактика, подобно М31, тоже имеет в качестве спутников две близкие, относительно крупные галактики, только, в отличие от М31, они не эллиптические, а неправильные. Это Большое и Малое Магеллановы Облака. Португальским мореплавателям они были известны по меньшей мере с XV века и назывались тогда Капскими Облаками. Магеллановыми их предложил назвать Антонио Пигафетта, спутник и официальный летописец экспедиции Магеллана. Название прижилось.
Большое Магелланово Облако, расположенное большей частью в созвездии Золотой Рыбы, а меньшей частью в созвездии Столовой Горы, имеет видимый поперечник в целых 5 градусов, что вдесятеро больше диаметра Луны. Малое Магелланово Облако, находящееся в созвездии Тукана, скромнее размерами — его видимый поперечник около 2 градусов. Впрочем, на фотографиях, полученных с высокой чувствительностью, БМО прослеживается до диаметра ю градусов, а ММО — до 6 градусов. Магеллановы Облака прекрасно видны на небе, лишенном засветки; БМО раза в 4 ярче, чем ММО. БМО находится от нас на расстоянии 50 кпк; ММО несколько дальше — 60-70 кпк.
Если в балджах спиральных галактик преобладают желтые тона, а в эллиптических галактик желто-оранжевые, то цвет БМО и ММО весьма голубой. Это связано с большим количеством содержащихся в Облаках очень горячих молодых звезд.
263
В БМО отчетливо видна некая барообразная структура, но чтобы различить хотя бы обрывки спиральных ветвей, надо призвать на помощь воображение. Значительно сильнее напоминает спиральный узор распределение нейтрального водорода в этой галактике. В БМО наблюдается регулярное вращательное движение, характерное для спиральных галактик, но скорость вращения мала, поскольку мала масса галактики раз в 2 о меньше массы Млечного Пути. БМО чрезвычайно богато всеми видами звездных скоплений — рассеянными скоплениями, ассоциациями и др. Любопытно, что некоторые шаровые скопления в БМО гораздо голубее шаровых скоплений Млечного Пути. Это значит, что они образовались в сравнительно недавнее время. Казалось бы, нонсенс! Всякому, кто учил астрономию в школе, должно быть известно, что молодых звезд в шаровых скоплениях быть не должно. Шаровые скопления Млечного Пути — старые объекты, образовавшиеся одновременно с нашей Галактикой. Газа в них нет, и пополнения населения молодыми звездами ждать не приходится. С другой стороны, новых шаровых скоплений в Галактике не возникает — облаков газа хватает только на образование рассеянных скоплений, иногда содержащих до тысячи звезд, но все же крайне бедных по сравнению с шаровыми.
Совершенно ясно, что в БМО иная ситуация. По-видимому, там еще относительно недавно имелись огромные облака газовопылевой материи, способные порождать шаровые скопления.
И все же в нашу эпоху звездообразование в БМО протекает в более привычных нам местах, представленных звездными ассоциациями и комплексами. Особенно выделяется сверхассоциация зо Золотой Рыбы, известная также под именем Туманности Тарантул. Простираясь на юоо световых лет, она содержит массу газа, равную 5 млн солнечных масс, и множество ярчайших бело-голубых звезд. Именно в Туманности Тарантул находится упоминавшийся нами ранее знаменитый объект Ri36a, поразивший астрономов невиданной светимостью. Наиболее яркие бело-голубые сверхгиганты БМО оказались ярче крупнейших сверхгигантов нашей Галактики. Разумеется, такие звезды на
264
гревают и ионизуют газ на большом расстоянии вокруг себя, превращая обычные облака газа в эмиссионные туманности — проще говоря, заставляя их излучать. Если бы Туманность Тарантул находилась от нас на расстоянии Большой Туманности Ориона, то она была бы ярче на ю звездных величин, занимала бы все созвездие Ориона и светила ярче Венеры. Предметы в ее свете отбрасывали бы тени безлунной ночью!
В Туманности Тарантул и сейчас идет активное звездообразование, причем рождается много массивных короткоживущих звезд. Неудивительно, что структура туманности очень сложная, со взаимно переплетенными петлями и кольцами. Это, по всей видимости, результат взрывов Сверхновых.
Но 30 Золотой Рыбы — только один пример светящегося облака, правда, самый яркий, а вообще в БМО их тысячи. Зато тяжелых элементов в межзвездной среде БМО меньше, чем в нашей Галактике; меньше и пыли. Даже гелия — и то меньше. Объяснение напрашивается само собой: у карликовых неправильных галактик, подобных БМО, «затянувшееся детство» — скорость звездообразования в них более постоянна, чем в крупных системах, и они уж точно не испытали ничего похожего на взрывное звездообразование на ранней стадии существования спиральных и особенно крупных эллиптических галактик. Если каждый из атомов, составляющих Солнце, Землю и все ее объекты, включая живые существа, побывал в среднем в разное время в недрах трех звезд, то типичный атом в БМО от силы может «похвастать» лишь одним пребыванием в звезде.
ММО во всем уступает своей соседке — у нее меньше и ярких туманностей, и звездных ассоциаций, и ярчайшие звезды имеют меньший блеск, а признаков спиральной структуры не наблюдается вовсе.
Нейтрального водорода, еще не израсходованного на формирование звезд, много не только в Магеллановых Облаках, но и вокруг них. Еще в 50-е годы XX века австралийские радиоастрономы °бнаружили, что на волне 21 см Магеллановы Облака в действительности представляют собой единый объект. Между Облаками
265
простирается «мост» из разреженного газа, в котором наблюдается мало звезд. Но все-таки они наблюдаются! Позднее было открыто тонкое газовое волокно огромной протяженности, начинающееся в Магеллановых Облаках и доходящее почти до противоположных им точек небесной сферы. Эта полоса газа, называемая Магеллановым Потоком, по-видимому, соединяет несколько других очень маломассивных галактик. Причину возникновения Магелланова Потока, пожалуй, наиболее разумно объяснить приливным воздействием. Взаимодействующие галактики вовсе не редкость во Вселенной; их касательное соприкосновение при близком пролете часто приводит к образованию длинных тонких «хвостов» и «антихвостов» (рис. 34,