Вселенная. Вопросов больше, чем ответов — страница 5 из 72

Первыми радиоастрономами оказались, пусть случайно, офи­церы радиолокационной службы. После войны, когда некоторые из них пришли в науку, а чувствительность приемных устройств была увеличена, открытия космических источников радиоизлу­чения посыпались, как из рога изобилия.

Человеку, разбирающемуся в радиотехнике, схема радиотеле­скопа кажется простой до отвращения. Параболическая «тарел­ка» вроде спутниковой, только побольше, приемное устройство, усилитель сигнала да анализатор спектра (заурядный радиотех­нический прибор, в качестве которого можно использовать до­работанный осциллограф) — вот и все. Но это только на первый взгляд. Если за дело возьмется любитель со спутниковой «тарел­кой», анализатором спектра и грудой радиодеталей, то резуль­татом, надо полагать, станет разочарование. Почти наверняка любителю удастся зафиксировать радиоизлучение Солнца, но и только. Стоило городить огород ради того, чтобы узнать, что Солнце существует!

Прежде всего: насколько велика должна быть приемная ан­тенна (та самая параболическая тарелка)? Ее диаметру следует

29

намного превышать длину волны принимаемого излучения, и чем он больше, тем выше (в потенциале) чувствительность и разрешающая способность инструмента — совсем как у оптиче­ских телескопов. Чувствительность зависит еще от уровня соб­ственных шумов приемного устройства — если он велик, то по­лезный сигнал «утонет» в шуме и не будет замечен. Основной шум аппаратуры — тепловой, вызываемый хаотичными движе­ниями заряженных частиц. Ясно, что чем выше температура, тем интенсивнее эти движения и тем выше уровень теплового шума. На практике входные контуры приемных устройств радиотеле­скопов охлаждают жидким гелием, добиваясь шумовой темпера­туры в единицы кельвинов.

Наконец, точное наведение огромной параболической чаши (прикиньте хотя бы ветровую нагрузку!) на небесный объект — само по себе непростая инженерная задача. Результаты наблю­дений, полученные на первых радиотелескопах, не отличающих­ся ни высокой точностью наведения, ни хорошей разрешающей способностью, не раз ставили астрономов в тупик. Обнаружен новый источник радиоизлучения, но где прикажете его искать? Площадь, в пределах которой он мог находиться, зачастую со­ставляла десятки квадратных градусов! Хорошо, если в пределах этой области находился объект, сразу бросающийся в глаза в оптическом диапазоне, ну а если нет? Как назло, многие источ­ники радиоизлучения (например, квазары) выглядят в оптиче­ских лучах, мягко говоря, невыразительно. Отождествление не­которых космических источников радиоизлучения растянулось на годы...

Однако детский возраст той или иной научной дисципли­ны тем и хорош, что свойственные ему болезни проходят вме­сте с ним, а открытия, сделанные с помощью пока еще весь­ма несовершенных инструментов, поражают воображение. Радиоастрономия резко расширила границы познаваемости мира. В самом деле, наблюдая Вселенную в ничтожно узком диапазоне видимых длин волн (400-800 нм), не уподобляем­ся ли мы тому слепцу из индийской притчи, который трогал

30

— Чем и как изучают Вселенную —

слона за хвост, после чего объявлял, что слон похож на ве­ревку?

Существующие в наше время радиотелескопы работают в диа­пазоне длин волн от миллиметров до метров. Они бывают полно­стью подвижными, полуподвижными и неподвижными. Широко известен неподвижный радиотелескоп в Аресибо (Пуэрто-Рико), введенный в эксплуатацию еще в 1963 году и честно служащий науке до сих пор (рис. 7). Неподвижная 305-м чаша этого радио­телескопа построена в естественном карстовом провале. Над ча­шей на высоте 135 м находится конструкция с приемной и пере­дающей аппаратурой, подвешенная с помощью системы тросов к трем вертикальным колоннам. Немного смещая эту конструкцию в ту или иную сторону, можно расширить полосу неба, доступ­ную для наблюдений, до 40 градусов. Дважды пережив серьез­ные реконструкции, «Аресибо» теперь позволяет вести наблюде­ния в диапазоне длин радиоволн от 3 см до 1 м с очень хорошей

31

— Часть I —

чувствительностью. Он способен уловить сигнал от мобильного телефона, находящегося на Венере, или послать сигнал, который может быть зафиксирован на другом краю Галактики. В «актив» этого инструмента можно записать точное определение периода вращения Меркурия, проведение радиолокационных наблюде­ний Венеры, первое открытие планеты у пульсара, исследование двойного радиопульсара, приведшее к подтверждению суще­ствования гравитационных волн...

Чувствительность радиотелескопов (определяемая как ми­нимальная регистрируемая плотность потока излучения) выше, чем у оптических инструментов, спектральное разрешение — также выше, зато с угловым разрешением одиночного радиоте­лескопа дело обстоит куда хуже, поскольку угловое разрешение пропорционально отношению длины волны к апертуре инстру­мента. Если на практике разрешение крупного оптического теле­скопа, установленного в месте с хорошим астроклиматом, может (иногда) достигать 0,3 с дуги1, то у радиотелескопов эта величина исчисляется минутами дуги.

Казалось бы, при таких условиях можно сразу забыть о по­строении радиоизображений космических объектов — однако нет. На помощь приходит радиоинтерферометрия. Если мы будем наблюдать один и тот же объект одновременно с двух радиотелескопов, связанных между собой и разнесенных на расстояние, называемое базой интерферометра, то угловое разрешение будет определяться уже не диаметром чаши теле­скопа, а базой. Почти ничего не выиграв в чувствительности инструмента, мы колоссально повысим угловое разрешение! Например, американская система VLA состоит из 27 парабо­лических антенн 25-м диаметра, расположенных в виде буквы Y, и имеет базу в 47 км. Разрешающая способность этой си­стемы на волне 6 см составляет 0,3 с дуги, что равно разреше­нию крупнейших оптических телескопов в условиях лучшего

1 Теоретически она выше, но влияние атмосферы при наземных наблюде­ниях резко ухудшает ситуацию. — Примеч. авт.

32

— Чем и как изучают Вселенную —

астроклимата (не говоря уже о таком «мелком удобстве», как возможность использовать радиотелескоп круглосуточно, а не только ночью). Если требуется еще большее разрешение, не­обходимо удлинить базу. Интерферометрические наблюдения со сверхдлинными — межконтинентальными и даже космиче­скими — базами давно уже перестали быть чем-то из ряда вон выходящим.

Между прочим без радиоастрономии мы вряд ли сумели бы понять процессы, связанные с рождением звезд, не говоря уже о пульсарах, квазарах, межзвездной среде... Но об этом — ниже.

Возникает вопрос: можно ли осуществить интерферометрию не в радиодиапазоне с длинами волн от миллиметров до метров, а в иных диапазонах электромагнитных колебаний, скажем, в оптическом, где длины волн — доли микрон? Задача оказалась крайне сложной, но решаемой. Четыре 8,2-м зеркала оптическо­го телескопа VLT (рис. 8) могут работать в режиме интерферо­метра.

2 Вселен

33

— Часть I —

Предел мечтаний для астронома-наблюдателя — вести непре­рывные наблюдения всего неба с высокой чувствительностью, хорошим разрешением и во всех диапазонах электромагнитных волн. Но мечты мечтами, а практика, как известно, вещь жесто­кая. Если мы захотим вести наблюдение неба в инфракрасном (ИК) или ультрафиолетовом (УФ) диапазоне, то сразу столкнем­ся с проблемой: поглощение волн определенных частот моле­кулами атмосферы столь велико, что обычно говорят об «окнах прозрачности» вне этих «провалов». Еще хуже в рентгеновском и гамма-диапазонах. Наземные наблюдения тут вообще невоз­можны. А между тем наблюдения вне оптического диапазона крайне полезны — например, ИК-излучение практически без помех проходит сквозь облака галактической пыли, делающие объекты, находящиеся в них или за ними, ненаблюдаемыми в оптическом диапазоне. Еще один пример: открытие с помо­щью международного астрономического спутника IRAS кольца или диска из твердых частиц, окружающего одну из ярчайших звезд — Вегу.

Начиная с 70-х годов прошлого века на околоземную орбиту выведено уже немало автоматических обсерваторий, оснащен­ных телескопами соответствующего диапазона. Срок их службы, как правило, невелик (несколько лет), и случается, что старый аппарат выходит из строя раньше, чем ему на смену будет за­пущен новый, более совершенный. Что поделать, даже NASA сплошь и рядом вынуждено выбирать из нескольких перспек­тивных проектов один-два, откладывая остальные в долгий ящик...

В качестве примера остановимся на рентгеновской обсерва­тории «Чандра», выведенной в 1999 году на высокую орбиту с помощью злосчастного шаттла «Колумбия». Обладая спо­собностью получать рентгеновские изображения в диапазоне энергий квантов 0,1-10 кэВ, она превосходит по чувствитель­ности своих предшественников («Эйнштейн» и ROSAT) в де­сятки раз, а разрешающая способность лишь в 5 раз хуже, чем у Космического телескопа им. Хаббла. Любопытна конструкция

34

— Чем и как изучают Вселенную —

рентгеновского телескопа. Поскольку рентгеновское излуче­ние достаточно эффективно отражается лишь при падении под очень малым углом к поверхности, рентгеновские телескопы состоят из двух стоящих друг за другом зеркал почти цилин­дрической формы (точнее, фрагментов параболического и ги­перболического зеркал). Их собирающая поверхность весьма мала, но, поскольку угол между лучом и поверхностью также крайне мал, ее увеличивают, вкладывая друг в друга несколь­ко пар зеркал на манер «матрешки». «Чандра» имеет 4 пары зеркал из специального стекла, покрытых слоем иридия. Собирающая площадь зеркал составляет «скромную» вели­чину в lioo см2. Изображение фиксируется на ПЗС-матрицы. Кроме собственно телескопа, «Чандра» несет дифракционные решетки высокой и низкой энергии, датчик электронов, про­тонов и альфа-частиц.

Гамма-телескопы не имеют зеркал — нет такой поверх­ности, которая могла бы отражать и фокусировать гамма- лучи. Приемниками очень жестких квантов обычно служат сцинтилляционные датчики и трековые детекторы,