42
— Ближайшие окрестности —
зывает на существование фотосинтеза, имеют возраст порядка 3 85 млрд лет. Учитывая колоссальную сложность задачи налаживания «производственного процесса» по самосборке нуклеотидных последовательностей из простейших химических соединений — великолепный результат!
Из непрерывности биологической эволюции на Земле следует, что Солнце никогда не позволяло себе глупых шуток, связанных с резким (в разы) увеличением либо уменьшением своей светимости. Наше главное светило — стабильная, очень спокойная звезда не преклонного еще возраста. Масса Солнца в 750 раз больше суммарной массы всех остальных тел Солнечной системы. Солнце — одиночная звезда, в то время как более половины всех звезд Галактики образует двойные и кратные системы. Расстояние до Проксимы Центавра — ближайшей к Солнцу звезды — составляет 4,3 св. года. Отсюда ясен ответ на вопрос о границах Солнечной системы: они проходят там, где гравитационное притяжение соседних звезд равно притяжению Солнца.
Внутри Солнечной системы принято (да и удобно) мерить расстояния в астрономических единицах (а.е.). Одна астрономическая единица соответствует среднему расстоянию от Земли до Солнца, равному 149,6 млн км. Юпитер, к примеру, обращается на среднем расстоянии 5,2 а.е., Нептун — 30 а.е., а некоторые кометы могут удаляться от Солнца на юо тыс. а.е. и более, что уже близко к границам Солнечной системы.
Нам неизвестно, родилось ли Солнце в составе рассеянного звездного скопления, как большинство звезд Галактики, или возникло в результате коллапса (сжатия) одиночной глобулы — так называют небольшие темные газово-пылевые облака необычно высокой для межзвездной среды плотности. Скорее первое, чем второе. Если так, то не стоит удивляться изолированности Солнца: 5 млрд лет — более чем достаточный срок для разрушения рассеянного скопления, в котором гравитационные связи Между звездами сравнительно невелики и не могут долго противостоять гравитационным возмущениям со стороны «посторонних» звезд. Для примера сравним всем известное рассеянное
43
скопление Плеяды с Гиадами. Возраст Плеяд около юо млн лет, и они довольно компактны. Возраст Гиад — около 1 млрд лет, и они разбросаны по довольно большой площади неба. По сути звезды Гиад уже не связаны гравитационным взаимодействием, а просто движутся по Галактике более-менее в одном направлении. Через несколько сот миллионов лет скопление рассыплется окончательно, и каждая его звезда будет двигаться вокруг центра Галактики самостоятельно.
По-видимому, с Солнцем произошло то же самое, причем очень давно — еще в архее. Обращаясь вокруг центра Галактики примерно за 200 млн лет, Солнце успело сделать не более 25 полных оборотов. Возможно, оно много раз проходило через спиральные рукава, несколько изменяющие ее орбиту1, проходило сквозь области звездообразования, оказывалось в сравнительной близости от расширяющихся оболочек Сверхновых, но можно сказать почти с полной уверенностью: Солнечная система не испытала последствий масштабных космических катастроф. Случайные сближения Солнца с другими звездами, видимо, про- исходили не раз, но они не были слишком тесными: об этом го- « ворят орбиты планет. А уж вероятность столкновения Солнца с другой звездой и вовсе исчезающе мала. Звездная плотность в окрестностях Солнца ничтожна, и это несмотря на то что мы сейчас находимся в ответвлении спирального рукава, т. е. в области с довольно высокой звездной плотностью по сравнению с меж- рукавьем. Если за время существования Галактики вне галактического ядра и происходили столкновения звезд, то такие случаи можно пересчитать по пальцам. Нет ничего удивительного в том, что с Солнцем за 5 млрд лет его существования не случилось ничего подобного, — это нормально.
1 Впрочем, наше Солнце находится в так называемой зоне коротации, т. е. на таком расстоянии от центра Галактики, где скорость обращения вокруг центра равна скорости вращения спирального узора. Таким образом, Солнце могло и не заходить в спиральные рукава — и данное обстоятельство вполне годится на роль одного из важнейших благоприятных факторов для развития жизни на Земле. — Примеч. авт.
44
Не раз высказывались гипотезы о галактических причинах вымирания тех или иных групп видов живых существ на Земле. Публику почему-то особенно интригует вымирание динозавров. Предполагалось, например, что жесткое излучение от оболочки вспыхнувшей неподалеку от нас Сверхновой может сделать проблематичным существование животных с большим сроком жизни. Характерно, что подобные гипотезы чаще всего высказываются людьми, мало смыслящими в биологии. Биологи же обычно ищут причины вымирания в чисто земных, экосистем- ных кризисах — и находят. Во всяком случае, их объяснения причин вымираний, не связанные с космическими катаклизмами, часто более убедительны для тех, кто возьмет на себя труд вникнуть в вопрос.
Короче говоря, на планете Земля никогда не происходили катастрофы космических масштабов — это опять-таки следует из непрерывности биологической эволюции на Земле. Катаклизмы меньших масштабов (например, активная бомбардировка молодой Земли астероидами более з млрд лет назад) — происходили, но ведь это совершенно нормально! Очень трудно придумать мало-мальски реалистичный сценарий эволюции Земли, начисто лишенный неприятностей. То же можно сказать и о любой другой планете.
Мы обязаны жизнью и другому обстоятельству: Солнце — звезда второго поколения, возникшая из материи, обогащенной тяжелыми элементами. Когда 12-13 млрд лет формировались первые звезды нашей Галактики, материя, послужившая «строительным материалом» для них, состояла лишь из водорода, дейтерия, гелия и небольшого количества лития. И только. Разумеется, никакой жизни на столь скудной основе возникнуть не могло, да и твердых планет тоже. Углерод, являющийся основой белковой жизни, а также совершенно необходимые ей кислород и азот рождались в недрах массивных звезд в результате ЯДеРных реакций и обогащали межзвездную среду после сбро- Са стаРЬ1МИ звездами своих оболочек. Более тяжелые элементы получались при катастрофических процессах в ядрах еще более
45
массивных звезд. В ту пору рождалось много массивных звезд чье короткое существование обрывалось взрывом Сверхновой. Расширяясь с большой скоростью, оболочки Сверхновых обогащали межзвездную среду полным набором необходимых для жизни элементов. Если бы Солнце образовалось не в гигантской Галактике, каков наш Млечный Путь, а в карликовой, где эволюция вещества идет медленнее, еще неизвестно, хватило бы в нашу эпоху тяжелых элементов для возникновения жизни или пока нет. Каждый атом Солнца, Земли и тела любого человека в среднем трижды побывал в недрах звезды. Но разве у кого- нибудь повернется язык сказать, что эти звездные отходы ни на что не годны?
И здесь возникает любопытнейший вопрос, сколь биологический, столь же философский о неизбежности (или нет?) появления жизни и разума во Вселенной. Существует красивое, хотя и чисто идеалистическое мнение: Вселенная создала человека как инструмент познания самой себя. Если на минуту предположить, что так оно и есть, приходится с неудовольствием признать, что Вселенная могла бы изобрести инструмент и получше человеческого мозга. Об этом свидетельствует вся история науки, полная заблуждений и движения вперед ощупью впотьмах. «Мы очень редко упускали возможность впасть в ошибку», — заметил как- то замечательный немецкий астрофизик К. Шварцшильд и был совершенно прав.
Правда, и с тем несовершенным мозгом, что дала нам природа, мы все-таки кое-что можем. Пусть наши знания о Вселенной даже сейчас пополняются гораздо медленнее, чем нам хотелось бы, но и в топтании на месте нас никто не обвинит. Чего стоит лишь один выход человека в космос!
Теоретически разрешающая способность телескопа определяется дифракционным пределом, напрямую зависящим от апертуры, — и тем не менее даже самый крупный наземный телескоп не покажет нам детали на поверхности тел Солнечной системы с увеличением более нескольких сот крат. «Разогнать» увеличение до дифракционного предела легче легкого, но атмосфера портит
46
47
и умозрительная, в одночасье стала проверяемой. Зато каким сюрпризом стало открытие Америки для тех, кто пользовался глобусом Бехайма! Что и понятно: никакой Америки из Европы не увидишь.
Аналогичную по значению информацию приносят космические аппараты, подчас удивляя ученых до крайности. Пересмотр прежних воззрений — обычное для астрономии дело. Критерием истины является опыт, а факты — упрямая вещь. Казалось бы, Солнечная система изучена довольно хорошо, но если кто-то сомневается, что она еще преподнесет сюрпризы, то уж точно не астрономы.
Еще недавно на вопрос о количестве планет Солнечной системы любой мало-мальски грамотный человек уверенно отвечал, что их девять: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Так было до 13 сентября 2006 года, когда решением Международного астрономического союза (MAC) Плутон был выведен (так и хочется добавить: с позором) из класса планет и причислен к телам пояса Койпера — транснеп- туновым астероидам, состоящим преимущественно из разных льдов. Об этих телах мы поговорим позже, а пока констатируем: в Солнечной системе ВОСЕМЬ планет1.
Они делятся ровно пополам на две группы: внутренние планеты земного типа и планеты внешние — газовые. Крупнейшей планетой первой группы является Земля, второй — Юпитер. Если бы мы взялись изложить все то, что на сегодняшний день известно науке о планетах Солнечной системы, то эти сведения заняли бы как минимум весь объем этой книги. Будем кратки, помня, что планеты суть весьма малая часть Вселенной, о которой мы здесь ведем речь.
Как говорилось выше, древние знали лишь пять планет, наблюдаемых невооруженным глазом. Труднее всего наблюдать Меркурий из-за его близости к Солнцу. Утверждают, например, что Николай Коперник так и умер, ни разу не увидев этой планеты. (А вы, читатель, ее видели?) Наблюдения Венеры, Марса, Юпитера и Са